POD considerations concerning the 60-day signal between Jason and Topex MSL

L. Cerri, Lisbon OSTST meeting, Oct. 20, 2010

Starting point of the discussion...

- signal in the MSL difference of Jason-1&2 with respect to other satellites
- Amplitude ~ 5 mm
- Period ~ 60 days
- Phase ~ Max when |Beta-prime| is max

Can this be due to the orbit computation ?

Possible errors common to all solutions

- Global, 60-day radial orbit error over ocean can result from
 - A 60-day period radial force globally affecting the orbit scale
 - Geographically distributed radial differences
 - Mean over ocean might not be zero due to non uniform distribution of continental surface (ex. ITRF differences in the N/S direction)
 - Scaled by a factor of ~20% for N/S radial difference

Jason-1/TOPEX Comparison

J1–TX differences are highly correlated with solar illumination.

 Result of deficiencies in non-conservative force modeling in Jason/GDR orbit determination.

From E. Leuliette et al. 2010 Ocean Sciences Meeting • Portland, Oregon • 26 February 2010

Inter-center orbit comparison

• No evidence of signal above 1 mm amplitude in the mean radial difference over ocean

Mean radial difference over ocean

Solar Radiation Pressure

- Patterns induced by SRP modeling differences are at ~120-day period
- UCL Vs CNES B&W models have been independently obtained and show only small orbit difference (< 3mm rms with CNES current parameterization and negligible effects on the radial mean)

Solar Radiation Pressure

Radiators

 In the POD standards adopted for GDR orbits, satellite thermal emission from radiators is assumed to be constant (thermal control small wrt payload consumption)

Radiators

	Jason-1	Jason-2
Х	40 W	0 W
Υ	80 W	60 W
Ζ	0-8 W	100 W

- Heating is driven by solar illumination (60-day period)
- Emitted flux from +Z radiator not accounted for in current POD standards
 - For a 500 kg satellite , 100 Watts of diffused power are needed to obtain a 0,15 mm radial displacement

Radiators

- +/-Y radiators
 - Are in shadow at high beta-prime and facing the along-track direction.
 - Errors in this force are then compensated by along track empiricals
 - dynamic and reduced-dynamic orbits are close

Albedo / Earth Infrared

- This force has a mean 60-day pattern
- A basic planetery radiation model is included in the POD standards
- Max force when the sun is in the orbit plane
- The effects of Earth radiation pressure mis-modeling should be further investigated (expected to be small compared to the 5 mm radial shift we are looking for)
- No conclusive sign of beta-dependent pattern in the high elevation SLR residuals over independent (DORIS, GPS) Jason orbits

Center of Mass knowledge

- "Jason-2 satellite budgets and margins" document: the uncertainty in the SA center of mass position and its movement due to thermal warping are the main contributors to the movement of the satellite center of mass.
- However, SA Mass / Sat. Mass ratio = 42/505 = 0,08

SA Center of Mass

- Uncertainty of the SA CoM position
 - Perpendicular to the SA plane: < 21 mm, (1.7 mm on total satellite mass)

The projection along the radial direction is variable at the orbital period , with no projection at high beta prime

- In SA plane: only 3 mm, which scales down to 0.24 mm in terms of S/C CoM.
- SA CoM movement due to thermal warping
 - perpendicular to the SA plane (no radial projection at high beta prime)
 - In sunlight, the maximum displacement opposite to the sun is -6.5 mm , in shadow it is +1.5 mm. Effect on the platform CoM is below 1 mm

Conclusions

 an error in Jason non-conservative force models or in the position of Jason CoM can't explain the 60-day signal observed between Jason and Topex MSL.