An Investigation into the Source of the 59-Day Variations in Jason Sea Level

*E. W. Leuliette*¹, *R. Scharroo*^{1,2}, *W. H. F. Smith*¹, J. L. Lillibridge¹, and L. Miller¹

¹NOAA/Laboratory for Satellite Altimetry ²Altimetrics LLC

Special thanks to Gary Mitchum

Is the TOPEX CoG correction valid?

- How do J1–TX orbit range differences depend on sun angle and orbital parameters?
- Can an empirical correction based on J1–TX cal phase differences remove the 59-day & semiannual in the J1 time series?

Tide gauge calibration

Mitchum tide gauge calibration without S2 alias removed

- No IB correction for TX or gauges
- No tide model applied to gauges, GOT4.7 applied to TOPEX

Amplitude (mm) and phase of 58.77 day signal

cycles	1-364	1 – 235	236 – 364
Weighted gauges	2.4 (205°)	1.6 (200°)	3.2 (197°)
TOPEX@gauges (CoG applied)	2.5 (193°)	2.3 (183°)	2.3 (191°)
TOPEX@gauges (no CoG)	3.2 (196°)	4.8 (197°)	4.4 (192°)
TOPEX (CoG) – gauges	0.5 (103°)	0.8 (142°)	0.9 (17°)
TOPEX (no CoG) – gauges	2.3 (188°)	2.8 (185°)	1.6 (205°)

Bias depends on solar illumination

For per-cycle global means, the J1-TX bias is highly corrected with the amount of time TX/J1 spent in the Sun.

NOAA

Bias behavior in/out of eclipse

Mean bias after J1–TX leaves eclipse

Not simply a problem at S2 frequency

Mean bias after J1–TX enters eclipse

The 18 mm linear drift in range implies a thermal effect in one of the instruments

TOPEX Center of Gravity correction

- α' , orbit angle, i.e. the angular separation of the spacecraft from the orbital 6 a.m. position.
- β' , solar aspect angle, i.e. the angle between the Earth/Sun position vector and the orbital plane.

2010 Ocean Surface Topography Science Team Meeting • Lisbon, Portugal • 20 October 2010

NOAA

J1–TX calibration phase differences

Orbit – range

 α' (deg)

8 727 638 calibration phase differences binned 4° in α ' and 5° in β '

Sea level

 α' (deg)

CoG applied (–)

EOFs of J1–TX orbit – range

Solar angle basis functions

Beta angle basis functions

Correction from reconstruction of EOFs

NORR

Uncorrected

Correction EOF 1–4

Statics for J1—TX global mean sea level residuals during each TOPEX phase

	Calibration phase		Interleaved phase	
	St. dev. (mm)	Variance reduction	St. dev. (mm)	Variance reduction
Uncorrecte d	4.8		4.2	
EOF 1	2.5	73%	2.4	68%
EOFs 1–2	2.2	78%	2.2	73%
EOFs 1–3	2.0	82%	2.1	75%
EOFs 1–4	2.0	83%	2.0	77%

Correction applied to calibration phase

Amplitude of 59-day cycle in J1—TX sea level differences during the calibration phase (Jason cycles 1 – 20)

	Amplitude, 59 days (mm)	Variance reduction	Amplitude, 182.5 days (mm)
Uncorrected	5.9		1.4
EOF 1	2.6	80%	0.1
EOFs 1–2	2.2	86%	0.3
EOFs 1–3	2.0	89%	0.4
EOFs 1–4	1.9	90%	0.6

Correction applied to interleaved phase

Amplitude of 59-day cycle in J1—TX sea level differences during interleaved phase (Jason cycles 26 – 138)

	Amplitude, 59 days (mm)	Variance reduction	Amplitude, 182.5 days (mm)
Uncorrected	5.1		1.3
EOF 1	1.8	87%	0.1
EOFs 1–2	1.3	94%	0.2
EOFs 1–3	1.1	95%	0.2
EOFs 1–4	1.1	95%	0.3

Is the TOPEX CoG correction valid?

- Amplitude of 59-day signal is smallest when CoG & GOT4.7 applied
- Tide gauge calibration implies CoG should be applied
- How does the J1–TX SSH and orbit range bias depend on sun angle and orbital parameters?
- Coherent patterns with a range of 5 cm

Can an empirical correction based on J1–TX cal phase differences remove the 59-day & semi-annual in the J1 time series?

 A correction based on 1 or 2 EOFs reconstructing J1–TX biases during the calibration phase can nearly eliminate the 59-day signal during the entire Jason-1 mission

NOAA

NOAA-NESDIS-ST/

SSH Corrections constructed from EOFs

NOAA

