Interannual-to-Decadal Variability in the Bifurcation of the North Equatorial Current off the Philippines

B. Qiu and S. Chen

Dept of Oceanography, University of Hawaii

Western N Pacific circulation schematic

Importance of low-latitude western boundary current variability

Mean SSH field in the western NP Ocean (Rio et al. 2009)

Large basin-scale seasonal migration in zero wind stress curl line

Identifying time-varying NEC bifurcation along the Philippine coast

- Utilize the weekly AVISO SSH anomaly data (1/3 -resolution, 10/1992-present)
- Add the mean SSH field of Rio et al. (2009): mean NEC bifurcation at ~12 N
- Calculate the meridional geostrophic velocity as a function of y along the Philippine coast:

$$v_g(y,t) = \frac{g}{f} \left[h_e(y,t) - h_w(y,t) \right],$$

where h_e is SSH in 1 -band east of the coast and h_w in 1 -band further to the east

The NEC bifurcation latitude Yb(t) is defined at where vg=0 in each month

- Presence of intraseasonal signals associated with the intrinsic MC variability
- Large migration on interannual-to-decadal time-scales

Linear correlation between Y_b(t) and the local SSH time series

Given the high correlation, the observed SSH signals in the 12 -14 N and 127 -130 E box can be used as a proxy for Yb(t):

 $Y_p(t) = 11.9 - 0.13 \times h'(t)$ (°N),

Low-frequency SSH variability vs. wind stress curl forcing

• Under the long-wave approximation, large-scale SSH changes are governed by linear vorticity dynamics:

$$\frac{\partial h'}{\partial t} - c_R \frac{\partial h'}{\partial x} = -\frac{g' \operatorname{curl} \boldsymbol{\tau}}{\rho_o g f} - \epsilon h',$$

• Given the wind forcing, SSH changes can be found by integrating the above equation along the Rossby wave characteristics:

$$h'_m(x,y,t) = \frac{g'}{\rho_o g f} \int_{x_e}^x \frac{1}{c_R} \operatorname{curl} \boldsymbol{\tau} \left(x', y, t + \frac{x - x'}{c_R} \right) \exp \left[\frac{\epsilon}{c_R} (x - x') \right] \, dx',$$

 c_R : observed value

- curl au: monthly ECMWF reanalysis data (Balmaseda et al. 2008)
 - € : Newtonian damping rate (=1/2 yrs.)

x-t plot of observed vs. modeled SSH anomalies along 12°-14°N

Proxy bifurcation latitudes from observed vs. modeled SSH data

Seasonally-migrating zonal mean wind is ineffective in changing Y_b due to destructively forced signals along the wave characteristics

$$h'_m(x,y,t) = \frac{g'}{\rho_o g f} \int_{x_e}^x \frac{1}{c_R} \operatorname{curl} \boldsymbol{\tau} \left(x', y, t + \frac{x - x'}{c_R} \right) \exp \left[\frac{\epsilon}{c_R} (x - x') \right] \, dx',$$

NEC bifurcation latitudes inferred from the wind-forced SSH model

$$h'_m(x,y,t) = \frac{g'}{\rho_o g f} \int_{x_e}^x \frac{1}{c_R} \operatorname{curl} \boldsymbol{\tau} \left(x', y, t + \frac{x - x'}{c_R} \right) \exp \left[\frac{\epsilon}{c_R} (x - x') \right] \, dx',$$

 c_R : observed value

- curl au: monthly ECMWF reanalysis data (Balmaseda et al. 2008)
 - € : Newtonian damping rate (=1/2 yrs.)

NEC bifurcation latitudes inferred from the wind-forced SSH model

NEC bifurcation latitudes inferred from the wind-forced SSH model

While ENSO index serves as an indicator for the time-varying NEC bifurcation, the exact Y_b(t) is determined by surface wind forcing in the 12-14 N band of the western Pacific basin

Summary

• The western North Pacific LLWBC variability ranges from intra-seasonal to decadal timescales. Decadal signals dominate after 1990s.

• ENSO and regional monsoonal wind forcings are effective. Basin-scale seasonal wind has weak impact.

 Northerly bifurcation tends to coincide with El Nino, though the correspondence deteriorated in recent years.

• Wind-driven baroclinic vorticity dynamics forms an adequate framework for interannual and longer time-scale hindcast/prediction.

 Intra-seasonal variability is controlled by internal ocean dynamics (i.e. inability of removing high-PV anomalies carried by MC) and is difficult to predict.

JPO preprint: <u>www.soest.hawaii.edu/oceanography/bo</u>

Tropical Pacific wind stress and curl regressed to Yb(t)

Tropical Pacific wind stress and curl regressed to Nino-3.4 index

Wavelet power spectrum for wind stress curl forcing in 12°-14°N and 140°-170°E

Enhanced decadal Y_b variability after 1993 reflects the corresponding changes in wind forcing in the western Pacific