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Idea...

• A body of recent work (Klein, Lapeyre and collaborators) 
suggests that Surface Quasigeostrophic (SQG) dynamics 
provides at least a partial description of upper-ocean 
submesoscale flow.

• ...but the surface of the ocean is not a rigid boundary, and 
SQG is, formally, an exotic special case.   

• How can we generalize `SQG behavior’ to realistic 
environments?   What are the minimum, essential 
ingredients to get SQG behavior, and what are its limits?

• Claim: SQG turbulence is a generic aspect of geostrophic 
turbulence near background inhomogenities.
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SQG at a discontinuous jump in N

Conservation law at z=0

When N has a step-function 
jump, PV is dominated by 
delta-fn from dN/dz(z=0):    
q advection ➔ b advection
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SQG behavior without a surface

Consider buoyancy frequency N(z) with a smooth jump at z=0:
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Near z=0, conservation of q is like conservation of b, with q 
above and below relatively small



Green’s function for QGPV inversion

Given QGPV operator in spectral space

...we can define a Green’s function

...such that the streamfunction can be recovered from the PV 
by integration
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Spectrum from GF: Example

Consider limits of constant and delta-function PV distributions

Green’s function for constant N and z→±∞

Spike in q picks out just contribution of G at z=0.

Smooth, but peaked q will do this up to a some small 
wavenumber proportional to the inverse of the width of the 
peak

q(z) = q0 ⇒ ψK(z = 0) ∝ K−2
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Consider N(z) with smooth jump

Model stratification:

...with

δ is our control 
parameter
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WKB approximation for Green’s fn
Consider nondimensional QGPV inversion in horizontally periodic, 
vertically infinite domain, for each horizontal wavenumber K (we 
later compute finite-depth G numerically)
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WKB approximation of Green’s function for operator when
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Relative smoothness of G and q...
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1.  Peak of PV at z=0:

⇒ Local SQG relation

2.  Large wavenumber:

⇒ Local 2D relation

Consider two limiting cases:



Conjecture
Peaked PV will yield SQG-like dynamics between 

deformation wavenumber of domain, KD, and 
deformation scale of jump, Kδ

KD Kδ

2-D like:  
buoyancy/PV 
signals `feel’ the 
boundaries of fluid 
(not included in our 
infinite-BC GF)

SQG-like at z=0:  
PV appears as 
spike

???  ...in QG-
world, return to 
2D, since here 
spike in PV looks 
big and smooth



-2 -1

Numerical GF spectra
Choose initial PV 
to be consistent 
with N
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Spectra of 
L-1 q for G 
with 
boundaries 
at z = +/- 1

ψ � = 1



Nonlinear simulations
Freely-evolving, rigid boundaries at z= +/- 1, N(z), initial PV and 
streamfunction as below.  Resolution 512^2 x 400



Vorticity at z=0
δ = 0.01

δ = 0.03

δ = 0.1



Vorticity for δ = 0.03
z = 0

z = 2 δ

z = 5 δ

z = 10 δ



KD = f/(HN0) Kδ = f/(δNd)

KE spectra at z=0 for 3 cases



Conclusions
• ‘SQG behavior’ occurs near vertical changes in 

stratification N, at wavenumbers K such that     
f/(NH) < K < f/(Nδ)

• The base of the mixed layer is thus the likely 
generator of observed SQG-like dynamics

• SQG seems to be a generic characteristic of 
geostrophic turbulence ... 

• In real flows (and flows modeled by the full 
equations), SQG behavior provides a route to 
loss-of-balance, since the Rossby number 
increases throughout its forward cascade



Shameless advertisements for 
other work related to interpreting 

satellite observations
• Sensitivity of mixing measures to sparse spatial 

and temporal surface observations (w/ S. Keating 
- submitted to JPO)

• Projection of QG flow onto vertical modes that 
efficiently represent both surface and interior 
dynamics and diagonalize the energy (w/ J. 
Vanneste)

• Turbulent filtering methods to model unresolved 
flow (w/ A. Majda and S. Keating)
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Decreasing spatial resolution

FTLE for SQG flow with sparse obs


