Estimating depth from SWOT measurements: A case study from the Rio Grande river

Michael Durand Ohio State University

Kostas Andreadis Ohio State University

> Larry Smith UCLA

Lisbon Workshop October 21, 2010

Funding: Physical Oceanography

Progress in estimating discharge

- LeFavour and Alsdorf, GRL, 2005
- Andreadis et al., GRL, 2007
- Durand et al., GRL, 2008
- Biancamaria et al., IEEE JSTARS, 2010
- Durand et al., IEEE JSTARS, 2010
- Biancamaria et al., RSE, 2010 (in press; Friday talk)
- Andreadis et al., in prep. (Friday talk)
- Clark et al., in prep. (See posters)
- Wilson et al., in prep. (See posters)
- Yoon et al., in prep. (See posters)
- Jasinski et al. (See posters)
- Carlo et al. (See posters)

Progress: Manning from space

$$Q = \frac{1}{n} w z^{5/3} \left(\frac{\partial h}{\partial x}\right)^{1/2}$$

Le Favour & Alsdorf, GRL, 2005

Progress: Effect of height errors

$$\left(\frac{\sigma_Q}{Q}\right)^2 = \eta^2 + \left(b\frac{\sigma_{H_{SWOT}}}{H_{SWOT}}\right)^2$$

Height errors will not be a controlling factor in discharge estimates

Rivers deeper than ~1.5 m, uncertainty less than 25%

Biancamaria et al., JSTARS, 2010

Progress: Effect of depth errors

Progress: Effect of depth errors

Depth errors

Depth estimated by leastsquare continuity algorithm

Includes errors due to SWOT height, baseflow depth, and temporal sampling

Durand et al, JSTARS, 2010

The depth problem: Another look

SWOT does not observe depth below the lowest height measurement

Hydraulic depth: Definition

Goal: Estimate hydraulic depth from SWOT observations

A new project: Two approaches to depth Hydraulic Geometry Data Assimilation

For more: See Larry Smith's talk tomorrow

A new dataset: Rio Grande river

Data assimilation: Background

Trading time for space with SWOT

Spatial ensemble Kalman filter

Parameterizing unseen bathymetry

Goal: Estimate the optimal minimum depth

Downstream

Upstream

Results at a single cross-section

Upstream Downstream 1136.4 1136.25 1136.2 1136.3 1136.15 1136.1 Jpstream water height, m 1136.2 1136.05 Elevation, m 1136.1 1136 1135.95 1136 1135.9 1135.85 1135.9 1135.8 1135.75 1135.8 <mark>–</mark> 1133.5 10 20 30 40 0 1134.5 1135 1134 1135.5 1136 Distance, m Downstream bathymetry, m

Results at a single cross-section

Upstream Downstream 1136.4 1136.25 1136.2 1136.3 Observation 1136.15 1136.1 Jpstream water height, m 1136.2 1136.05 Elevation, m 1136.1 1136 1135.95 1136 1135.9 1135.85 1135.9 1135.8 1135.75 1135.8 10 20 30 40 0 1134.5 1135 1135.5 1134 1136 Distance, m Downstream bathymetry, m

Hydraulic reasons for the correlation

Shallower bathymetry leads to lower height upstream

Estimating bathymetry from SWOT

Use the EnKF analysis equation:

$$z_{k}^{+} = z_{k}^{-} + C_{zh} \left(C_{hh} + C_{v} \right)^{-1} \left(h_{obs} - h_{k}^{-} \right)$$

The correct hydraulic depth is obtained

True depth = 1.03 m

Rio Grande hydraulic depth

Bias Error Prior: 58 cm Posterior: 22 cm

Future and ongoing work

- Use spatial height sequence to update farther upstream
- Use sequence of height measurements (from high to low water) simultaneously to update bathymetry
- Sensitivity to measurement errors
- Application in 2-D (couple to instrument simulator)
- Introduce errors in discharge

Another approach to depth

Courtesy: Yeosang Yoon, see posters

Estimating bathymetry and depth

Results from a combined state-parameter EnKF

Courtesy: Yeosang Yoon, see posters

Are there any questions?

