October 21, 2010

Two science questions that ca only be addressed with SWO

Raffaele Ferrari Massachusetts Institute of Technology in collaboration with bernathey (MIT), A. Naveira Garabato (SOC), M. Nikura

Lateral eddy transport Vertical eddy transport

Eddies and winds in the Southern Ocean (SO) set the global ocean tratification below the surface thermoclines (Wolfe and Cessi, '10)

Slope of isopycnals in SO = $\frac{\tau_{SO}}{fK_{SO}}$

Eddies and winds in the Southern Ocean set the strength of the neridional overturning circulation (Wolfe and Cessi, '10; Nikurashin and Vallis, '10)

- nds over the Southern Ocean have strengthened over the last 30 ye ompson and Solomon, '02)
- s unclear whether ocean CO₂ uptake will increase or decrease in oonse to wind increase (Le Quéré et al., '07; Meredith and Hogg, '06) take depends on how *Kso* changes in response to wind change

ere are spatial variations in K_{SO}

Kso is suppressed in the core of the Antarctic Circumpolar Current *Kso* is enhanced at depth below the core of the ACC

$$C_{SO} = 0.32 \frac{g}{f} \frac{\sqrt{\eta'^2}}{1+8|\nabla \overline{\eta}|^2/|\nabla \eta'|^2} = 0.32 \frac{g}{f} \frac{\sqrt{\eta'^2}}{1+8U^2/EKT}$$

Marshall et al., '04

ppression of *Kso* is confined to ACC frontal jets ontal jets

Drake Passage Section (WOCE) from Garabato and Ferrari, '10

aditional altimeters have a resolution of O(100)km

- ACC fronts cannot be resolved
- VOT will have a resolution of O(10)km
- ACC fronts will be resolved

magnitude and structure of K_{SO} will be measured for the first time

Lateral eddy transport Vertical eddy transport

change of tracers and nutrients between the ocean surface and inte centrated at fronts

onts are speculated to regulate primary productivity in the ocean

Lateral dispersal of tracer - due to the slumping of a ML front

- rtical transport at fronts in the QG approximation is determined by norizontal density gradients
- norizontal velocity shears
- th quantities are dominated by frontal scales of O(1-50)km
- peyre and collaborators suggested to use SWOT and QG theory to i ical transport of tracers from sea surface height

$$f^2 \psi_{zz} + N^2 \psi_{yy} = -2\nu_y b_y$$

Are QG estimates of vertical transport accurate?

- nulations of baroclinically unstable fronts are run with a QG model a nitive Equation model
- e goal is to test whether a QG model captures accurately the vertica sport of tracers

$$b = N^2 z + rac{M^2}{\ell_0} \cos \ell_0 y c$$

 $u = rac{M^2}{fm_0} \sin \ell_0 y \sin m_0 z$
 $Ro = rac{M^2}{Nf}$
 $Ri = Ro^{-2}$

Are QG estimates of vertical transport accurate?

- nulations of baroclinically unstable fronts are run with a QG model a nitive Equation model
- e goal is to test whether a QG model captures accurately the vertica sport of tracers

Ro simulations are QG-like ep horizontal KE spectrum (k⁻³)

 $\frac{w^2}{2 + v^2} \ll 1$ Ro=0.13, Ri=64

High Ro simulations are not QGflat horizontal KE spectrum (k⁻⁵/₂)

• $\frac{w^2}{u^2 + v^2}$ approaches 1

Ro=0.42, Ri=5.7

rtical velocity is underestimated by QG approximation at Ro=O(1) rtical tracer transport of tracers is well captured by QG approximatio n for Ro=O(1)

Full resolution of lateral eddy diffusivity Partial resolution of vertical transport at fronts A new window on ocean productivity

Matthew Mazloff (Ph.D. thesis)

78° South to 24.7° South
1/6° Horizontal resolution;
42 depth levels (partial cells)
similar setup to ECCO-GODAE

Kinetic Energy

Horizontal SeaSoar section

KE and PE horizontal spe

Equipartition of KE and PE Spectral rolloff of k-2

Horizontal SeaSoar section

Rossby number

Equipartition of KE and PE

Spectral rolloff of k-2

Eddies and winds in the Southern Ocean set the strength of the neridional overturning circulation (Nikurashin and Vallis, '10)

 κL 117 12/2