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Key developments in flood risk management

Better terrain data
« 2D models

« Bigger models

— due to faster algorithms,
parallel processing and faster
computers

 Use of satellite data to

constrain model predictions




LIDAR terrain data

50cm spatial resolution, ~5¢cm rmse vertical error




2D models: Baltimore, USA

Water Depth over DEM at time Os
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6m model, 700k cells, 3 hour flood, 4 minutes compute time




Bigger models: central Amazon, Brazil

270m model

750k cells

2 year run

~1 day compute time

Wilson, M., P. Bates, D. Alsdorf, B. Forsberg, M. Horritt, J. Melack, F. Frappart, and J. Famiglietti (2007), Modeling large-scale inundation
of Amazonian seasonally flooded wetlands, Geophys. Res. Lett., 34, L15404, doi:10.1029/2007GL030156.




Airborne Synthetic
Aperture Radar classified
at a spatial resolution of
1m, using a statistically

active contour (Snake).



Upton on Severn, UK — 18m model vs airborne SAR
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Tewkesbury, UK

* Whole city flood modelling at 2m resolution, ~4M cells — Tewkesbury, UK

summer 2007
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Dealing with uncertainty

o Satellite data often treated as deterministic ‘truth’

« Actually need to account for observation
uncertainty to properly use satellite data in the
model validation process

— Uncertain flood patterns

— Uncertain water elevations

 Either from altimeters, or from intersecting imaged
shorelines with a DEM

* Need methods to compare uncertain models to
uncertain data




How might this work: River Dee, UK
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Uncertain model-data comparison

Simultaneous SAR acquisitions over a flood
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Uncertain water levels: River Po, Italy

ASAR-WSM image of the 2008 flood
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Water level (m a.sl)

Water level (m a.s)

*  SHTM height at flood edge
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Water level (m a.s.l.)

Can these data discriminate betweeen hydraulic
models?
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Quantifying uncertainty reduction using data
assimilation: River Alzette, Luxembourg
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(a) ASAR image of 2003 flood event on the River Alzette with flood outline and river cross-
section locations; (b) DTM and cross-section locations; (c) illustration of water level extraction
method from inundation extent and cross sections and (d) ensemble of upstream boundary
conditions from a simple hydrological model
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Results

« Even quite noisy water elevation and inundation
pattern data can map flood waves from space and
discriminate between hydraulic models

« Such data when assimilated reduce the error in
discharge estimates in a corrupted ensemble

« SWOT should be much better than this and thus
have great potential for transforming our ability to
model surface water flows.




