Mesoscale turbulence and biogeochemistry

Marina Levy LOCEAN-IPSL, CNRS-INSU

OST 2010, Lisbon, 18-22 October 2010

Moderate variations

Large scale / Sub-mesoscale variations of phytoplankton

Climatology 1998-2006

March 30 2001

Phytoplankton (SEAWIFS)

Outline

Why is phytoplankton structured at the sub-mesoscale?

- 1- Lateral stirring
- 2- Vertical advection
- 3- Mixed-layer depth variations

(Can the underlying processes be observed (from space)?)

LEHAHN ET AL.: STIRRING OF NORTHEAST ATLANTIC BLOOM

Lateral stirring

Shows how well can we predict horizontal stirring from current resolution of altimeters

Stirring:

. not so important for giogeochemical budgets

. important for sampling strategies

Lehahn et al., JGR, 2007

Fluid dynamical niches of phytoplankton types

Francesco d'Ovidio^{ab,1,2}, Silvia De Monte^{1,1}, Severine Alvain⁴, Yves Dandoneau^b, and Marina Lévy^b

Diatoms

Nanoeukariotes Phaeocystis

Coccolithophorides

Vertical advection

Vertical velocities (estimates from observations)

SeaSor survey between two eddies

Vertical structure of W

Large positive and negative vertical velocities within sub-mesoscale filaments

Legal et al., JPO, 2007

Vertical distribution of Nitrate (limiting nutrient)

Float observations in the oligotrophic North Pacific Gyre (vicinity Hawaii)

Johnson et al., Nature, 2010

Enhancement of primary production through sub-mesoscale upwelling of limiting nutrients

LEHAHN ET AL.: STIRRING OF NORTHEAST ATLANTIC BLOOM

Lehahn et al., JGR, 2007

Subduction of phytoplankton

Niewiadomska et al., limnol & ocean, 2008

Glidder observations

Phyto, 100m-200m Phyto, 0-100m

Spin-down of a front Oligotrophic system

Increase of Phytoplankton production by factor 2

Lévy et al., JMR, 2001

Lathuilière et al., JGR, 2010

Lathuilière, Lévy, Echevin, J. Plankton Res., in press

$$\frac{\mathrm{d}\mathcal{N}}{\mathrm{d}t} = -\mu \mathcal{N}P + \gamma mP + \frac{\alpha + w}{H} \mathcal{N}_{\mathrm{sub}}$$

$$\frac{\mathrm{d}P}{\mathrm{d}t} = \mu \mathcal{N}P - mP - \frac{\alpha}{H}P$$

$$\mathcal{N}_{\mathrm{e}} = \frac{\alpha + mH}{H\mu}$$

$$\frac{\mathrm{d}P_e}{\mathrm{d}\alpha} = \frac{w_{\mathrm{c}} - w}{\left(\alpha + w_{\mathrm{c}}\right)^2} \mathcal{N}_{\mathrm{sub}}$$

$$P_{\rm e} = rac{lpha + w}{lpha + w_{
m c}} \mathcal{N}_{
m sub}$$

$$w_{\rm c} = (1 - \boldsymbol{\gamma}) m H$$

(b) Weak upwelling and open ocean

Strong upwelling

Impact of submesoscale vertical advection on pCO2

Potential change of pCO2 due to small scale upwelling

TEMP effect + DIC effect + ALK effect + BIO effect

 $\frac{\Delta p C O_2}{n C O_2} =$ TEMP effect = $-\frac{\kappa \Delta t}{H} \left(\beta \frac{\partial T}{\partial z}\right)$ DIC effect = $-\frac{\kappa \Delta t}{H} \left(\frac{\xi}{DIC} \frac{\partial DIC}{\partial z} \right)$ ALK effect = $-\frac{\kappa\Delta t}{H}\left(\frac{\xi_A}{ALK}\frac{\partial ALK}{\partial z}\right)$ NO₃effect = $\frac{\kappa \Delta t}{H} R_{C:N} L \frac{\partial NO_3}{\partial z}$.

 κ strength of mixing

19

Estimate the different effects using available climatologies:

- De Boyer Montegut Mixed-layer depth climatology
- Levitus climatology for T, S, NO3
- GLODAP climatology for DIC, ALK

Global estimate of % pCO₂ change due to localized upwelling

for a given strength of mixing κ =1.e⁻³ m²/s² and for Δ t= 1 day

Large areas show little sensitivity due to compensating effects
Some regions indicate an increase in pCO₂, others a decrease
Large seasonality

The 2001 POMME experiment in the NE Atlantic Program Ocean Multidisciplinary MEsoscale

Pomme area

Mixed-layer depth gradientSpring phytoplankton bloom

50.00 105.00 160.00 215.00 270.00 325.00 380.00 435.00 490.00 545.00 600.0

Memery et al., JGR, 2005

Early bloom : strong modulation of PP by variations of MLD

Lévy et al., JGR, 2005

Could not be observed : requires high spatial and high temporal resolution

Late bloom : PP modulated by horizontal stirring of N-S gradient

Lévy et al., JGR, 2005

Conclusions

Different processes affect phytoplankton/pCO2 at the submesoscale Lateral stirring Vertical advection (nutrient upwelling + phyto downwelling) Mixed-layer variations

Requires synoptic observations of Lateral currents Vertical velocities Mixed-layer depth

Combined with large scale distribution of phytoplankton and nutrients at surface and at sub-surface

```
SWOT (+ SQG):
```

Better evaluation / localisation of stirring : field experiments Estimation of W MLD ???