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Altimetric M2 Internal Tide Signals: PacificOcean
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Note: Not every “wiggle” is an internal tide!
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—p INTRODUCTION:
Contrasting pictures of internal tides: in situ versus satellite altimetry

Is the altimeter picture misleading?
Is there a significant incoherent signal being missed in our altimeter processing?

—» APPROACH:
Search for temporal changes in altimetry by partitioning data.
Wavenumber-domain analyses with and without IT “corrections.”

—P INTERESTING EXAMPLES:
South China Sea
Hawaiian Ridge

Hint: Altimetry detects mostly first mode, not higher modes

This is expected on theoretical grounds.
A possible clue to reconciling these different pictures?



Can we detect temporal changes in altimetric internal-tide signals?

* 17 years of T/P-Jason altimeter data
Partition data in various way (years, seasons, etc.)
Ensure sampling can avoid aliasing problems

Each partition = 3 years).
Can’t look for spring/neap differences

 Estimate tides for each data subset
e High-pass filter to isolate internal tides
« Compare

Major limitation: we’ll still detect only ‘coherent’ temporal changes.



M2 Internal Tide Signals (Hawaiian Ridge)
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Winter vs Summer

Altimetric Internal Tide Signals by Season
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Altimetric Internal Tide Signals by Season: Winter vs Summer
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Winter vs Summer

Altimetric Internal Tide Signals by Season
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Altimetric Internal Tide Signals by Season:

Winter vs Summer
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Spectral Analysis of Along-Track Sea-Surface Heights

Compute along-track SSH spectrum from ~600 repeat cycles,
after removing barotropic tides via a good model.

Fu, L., On the wavenumber spectrum of oceanic mesoscale variability observed
by the Seasat altimeter, JGR 88, 4331, 19883.

Le Traon, P.-Y. et al., Spatial scales of mesoscale variability in the North Atlantic
as deduced from Geosat data, JGR 95, 20267, 1990.

Stammer, D., Global characteristics of oceanic variability estimated from regional
Topex/Poseidon altimeter measurements, JPO 27, 1743, 1997.

Compute 2nd spectrum after also estimating and removing
along-track tides.

This will remove non-tidal signals only if they remain coherent
with the tidal potential over 17 years.
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Wavenumber Spectrum of Altimetric Sea-Surface Heights
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Observed tidal peaks are:
Better resolved by long arcs (long arcs good)
Broadened by changes in N2, f along track (long arcs bad)
Shifted if k not |l to track (long arcs maybe better)
Broadened by changes in k along track (long arcs bad)
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WAVELENGTH OF M, FIRST BAROCLINIC MODE
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Based on mode-1 phase velocities from Chelton et al (JPO, 1998).
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Spectral density (cm?/cpk)

Wavenumber Spectrum of Altimetric Sea-Surface Heights
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Spectral density (cm?/cpk)

Wavenumber Spectrum of Altimetric Sea-Surface Heights
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Red curve: after
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Variance in tidal peaks (cm?2)

Full SSH signal | Residual signal
Mode 1 1.22 0.26
Mode 2+ 0.26 0.12
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Spectral density (cm?/cpk)

Wavenumber Spectrum of Altimetric Sea-Surface Heights
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Spectral density (cm?/cpk)
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Spectral density (cm?/cpk)

Wavenumber Spectra of Altimetric Sea-Surface Heights
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Track 4 0.18 0.04
Track 3 0.27 0.12
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Spectral density (cm?/cpk)

Wavenumber Spectra of Altimetric Sea-Surface Heights

104—:
103—E \ / -
102?
o o e o
Wavenumber (cycles/km)
Black curve: Barotropic correction only
. Barotropic + along-track 2N2 u2 N2 v2 M2 S2 K2
Red curve: As above + Q1 O1 P1 K1 | o
Cyan curve: Asabove + a2 23522 T2R2 Variance in residual

peak = 0.16 cm?2
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Is there a “universal” background spectrum?

(revisit Hawaiian Ridge)
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Is there a “universal” background spectrum?
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Is there a “universal” background spectrum?
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Is there a “universal” background spectrum?
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Is there a “universal” background spectrum?
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Is there a “universal” background spectrum?
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Large scale, L > 120km
kK -118 SQG; k -°> QG; spatially variable

Middle scales, 120km > L > 35km
k -5/3 ageostrophic SQG; “stratified turbulence”; atm. forcing; broadband noise?
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Summary

. The altimeter detects mostly mode-1 and (much smaller) mode-2
internal-tide signals. This contrasts with in-situ measurements.

. With some exceptions, mode-1 is mostly (> 90% of variance) phase-
locked with the tidal potential. Mode-2 is less temporally coherent.

. The incoherent part of both modes is generally < 0.2 cm2 in SSH.
(one case was 0.26 cm?).

. South China Sea: Shows strong diurnal internal tides; shows strong
seasonal modulations of semidiurnalis.

. Hawaiian Ridge: Search for non-tidal spectrum finds k-’23 subrange
from 120km to 35km; origins and significance are speculative.
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