

On temporal variability of low-mode internal tides in the deep ocean

Richard Ray NASA Goddard Space Flight Center

Ed Zaron Portland State University

Altimetry for Oceans & Hydrology

1

Magaard & McKee *Deep-Sea Res.*, 1973.

"No phase-locking was found between barotropic & baroclinic tide."

Altimetric M2 Internal Tide Signals: PacificOcean

Note: Not every "wiggle" is an internal tide!

Outline

→ INTRODUCTION:

Contrasting pictures of internal tides: in situ versus satellite altimetry

Is the altimeter picture misleading? Is there a significant incoherent signal being missed in our altimeter processing?

--> APPROACH:

Search for temporal changes in altimetry by partitioning data. Wavenumber-domain analyses with and without IT "corrections."

→ INTERESTING EXAMPLES:

South China Sea Hawaiian Ridge

Hint: Altimetry detects mostly first mode, not higher modes

This is expected on theoretical grounds.

A possible clue to reconciling these different pictures?

Can we detect temporal changes in altimetric internal-tide signals?

- 17 years of T/P-Jason altimeter data
 - Partition data in various way (years, seasons, etc.)
 - **Ensure sampling can avoid aliasing problems**
 - Each partition \geq 3 years).
 - Can't look for spring/neap differences
- Estimate tides for each data subset
- High-pass filter to isolate internal tides
- Compare

Major limitation: we'll still detect only 'coherent' temporal changes.

M2 Internal Tide Signals (Hawaiian Ridge)

Mean error bar (before high-pass filtering) for "All" = 0.61 cm; for subsets = 1.27 cm

Altimetric Internal Tide Signals by Season: Winter vs Summer

Note: Not every "wiggle" is an internal tide!

Note: Not every "wiggle" is an internal tide!

Altimetric Internal Tide Signals by Season: Winter vs Summer

Note: Not every "wiggle" is an internal tide!

Altimetric Internal Tide Signals by Season: Winter vs Summer

Note: Not every "wiggle" is an internal tide!

Spectral Analysis of Along-Track Sea-Surface Heights

Compute along-track SSH spectrum from ~600 repeat cycles, after removing barotropic tides via a good model.

- Fu, L., On the wavenumber spectrum of oceanic mesoscale variability observed by the Seasat altimeter, JGR 88, 4331, 1983.
- Le Traon, P.-Y. et al., Spatial scales of mesoscale variability in the North Atlantic as deduced from Geosat data, JGR 95, 20267, 1990.
- Stammer, D., Global characteristics of oceanic variability estimated from regional Topex/Poseidon altimeter measurements, JPO 27, 1743, 1997.

Compute 2nd spectrum after also estimating and removing along-track tides.

This will remove non-tidal signals only if they remain coherent with the tidal potential over 17 years.

Observed tidal peaks are:

Better resolved by long arcs (long arcs good)
Broadened by changes in N², f along track (long arcs bad)
Shifted if k not II to track (long arcs maybe better)
Broadened by changes in k along track (long arcs bad)

WAVELENGTH OF M₂ FIRST BAROCLINIC MODE

Based on mode-1 phase velocities from Chelton et al (JPO, 1998).

Variance in tidal peaks (cm ²)				
	Full SSH signal	Residual signal		
Mode 1	1.22	0.26		
Mode 2+	0.26	0.12		

Variance in tidal peaks (cm ²)			
	Full SSH signal	Residual signal	
Mode 1	1.81	0.15	
Mode 2+	0.29	0.10	

Previous values on long arc: 1.22 0.26 0.26 0.12

Variance in mode-1 peaks (cm ²)			
	Full signal	Residual	
Track 4	0.16	0.03	
Track 3	0.10	0.02	
Track 2	1.10	0.05	
Track 1	1.02	0.12	

Variance in mode-1 peaks (cm ²)		
	Full signal	Residual
Track 4	0.18	0.04
Track 3	0.27	0.12
Track 2	0.32	0.02
Track 1	0.09	0.01

As above + Q1 O1 P1 K1

As above + $\alpha 2 \beta 2 \delta 2 \Gamma 2 T 2 R 2$

Red curve:

Cyan curve:

Variance in residual peak = 0.16 cm² Is there a "universal" background spectrum?

(revisit Hawaiian Ridge)

Is there a "universal" background spectrum?

Large scale, L > 120km k ^{-11/3} SQG; k ⁻⁵ QG; spatially variable

Middle scales, 120 km > L > 35 kmk -5/3 ageostrophic SQG; "stratified turbulence"; atm. forcing; broadband noise?

Summary

- 1. The altimeter detects mostly mode-1 and (much smaller) mode-2 internal-tide signals. This contrasts with in-situ measurements.
- 2. With some exceptions, mode-1 is mostly (> 90% of variance) phaselocked with the tidal potential. Mode-2 is less temporally coherent.
- The incoherent part of both modes is generally < 0.2 cm² in SSH. (one case was 0.26 cm²).
- 4. South China Sea: Shows strong diurnal internal tides; shows strong seasonal modulations of semidiurnals.
- 5. Hawaiian Ridge: Search for non-tidal spectrum finds k^{-5/3} subrange from 120km to 35km; origins and significance are speculative.