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Motivation

SWOT direct observations will include water surface
elevations, widths and slopes

Discharge is very important for hydrology

Direct estimation of discharge through Manning’s equation
can be difficult

Models can predict discharge, but impeded by significant
errors

Forcings (e.g. precipitation, boundary inflows)
Model parameters (e.g. channel characteristics)

Merging SWOT observations with modeling predictions via
data assimilation

Developing and testing of SWOT assimilation framework for
discharge estimation
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How to test the algorithms?

“Virtual” SWOT observations
Identical twin synthetic assimilation experiment



Previous work

A number of simple data assimilation experiments in different
study areas

Amazon River basin

240 km reach
Relationship between inundated area and slope
Estimated WSE and bathymetry at selected locations

Ob River basin

Estimated water depths
Model errors in precipitation and temperature
Demonstrated effects of localization in assimilation

Ohio River basin

50 km reach
Assimilation of SWOT WSE to estimate river discharge
Examined sensitivity to observation error and temporal
persistence of analysis



Previous work - WSE

Estimated river channel discharge and water depth after
assimilating synthetic WSE observations

True and Observed WSE

Differences of Open-loop and Assimilated WSE, from the True
WSE

True Open-loop Filter SWOT



Previous work - Discharge

Along-channel discharge

Downstream discharge

Discharge error time series



Previous work - Limitations

Model errors came only from boundary inflows

Uncertain knowledge of channel characteristics (bed elevation,
roughness etc.)

Synthetic SWOT observations generated by adding white
noise (σ = 50cm) to “true” WSEs

Needed an actual SWOT instrument simulator to produce
synthetic observations with correct orbital and error
characteristics

Larger domain size simulations



Study area

∼1000 km reach of the Ohio
River basin

Drains an area of ∼220,000
km2

Topography from National
Elevation Dataset (30 m)

River topology from
HydroSHEDS

Channel width and depth
from developed power-law
relationships

Modeled main stem with
inflows from tributaries



Models

LISFLOOD-FP raster-based hydrodynamics model

1-D solver for channel flow

2-D flood spreading model for floodplain flow

Kinematic, Diffusive and Inertial formulations

Requires information on topography, river channel
characteristics and boundary inflows

Assumption of
rectangular channel

Has been successfully
applied in a number
of river systems
(mostly smaller scale)



SWOT simulator

The Instrument Simulator calculates interferometric response
from land and water

Produces data with correct SNR, layover and geometric
decorrelation scattering properties

Thermal and speckle noise are added

Media effects will be added (precipitation, wet tropospheric
delay)



SWOT simulator data processing

Topographic layover and low land SNR make conventional
phase unwrapping challenging

Fringes are well defined over the water

The signal from topography may contaminate the signal over
the water

Assuming a “reference” interferogram, a change in height can
be estimated



Open-loop simulation

3-month simulations

Boundary inflows taken from USGS gauge measurements

Perturbed for “first-guess” using Q̂ = Q + N(0.2Q, 0.3Q)

Can examine impact of model errors in inflows and channel
characteristics separately

Channel width perturbed with 10% zero-mean Gaussian errors

Channel bathymetry perturbed with Gaussian errors
N(2.0m,0.5m)

Roughness coefficient assumed to be 0.042 (true value of
0.030)

Three open-loop simulations (Q, wnz, wnz-Q)



Data assimilation

A number of assimilation techniques available

Extended Kalman filter (EKF)

Requires explicit modeling of model error covariance, and
tangent linear models

Ensemble Kalman filter (EnKF)

Requires ensemble of model states

EKF is used, estimating the model error covariances using the
NMC method

assumes error correlations are similar to correlations of
differences between successive forecasts

Every SWOT pass is assimilated separately (filtering)

Smoothing could be done by assimilating observations for
every orbit cycle



Results - SWOT observations

Successive passes of
a full orbital cycle



Results - Open-loop simulations

True water depth and differences of three open-loop
simulations from truth

True Q wnz wnz-Q

Channel discharge for
one time step

Inflow error
dominates simulated
discharge

Errors in channel
characteristics play a
less significant role



Results - Q Simulation

Errors only in boundary inflows

Discharge and water depth for the three different simulations

March 30, 2010 April 19, 2010



Results - wnz Simulation

Errors only in channel width, depth and roughness

Discharge and water depth for the same SWOT overpasses

March 30, 2010 April 19, 2010



Results - wnz-Q Simulation

Errors only in inflows as well as channel characteristics

Ingesting SWOT observed WSE results in improved discharge
estimates

March 30, 2010 April 19, 2010



Discharge error temporally

Comparison of predicted discharge at study basin outlet

Spatially averaged error along the river channel

Assimilated discharge estimates are clearly better

Issue with temporal persistence, related to inflow errors

Downstream discharge Discharge RMSE



Results - Observation error

SWOT WSE
observations have an
uncertainty estimate
associated with each
value

During the assimilation,
an estimate of that
uncertainty is required

We can assess the impact
of different assumptions
about the statistics of
the observation errors



Results - Spatial coverage

SWOT will observe the
entire domain over a
number of passes during
the 22-day orbital cycle

How much is the
estimation skill decreased
when compared to
observing the entire
domain “at once”?

The assimilation is
mostly able to
compensate for partial
spatial coverage



Practical issues

Forward modeling (hydrodynamics) is computationally
expensive

Multi-core/GPU computing

Data assimilation algorithms

Can we afford ensemble-based approaches?
Variational assimilation

Data processing

Very large volumes of data (∼50 GB single SWOT cycle for
the Ohio study area)
Massively parallel frameworks, e.g. Google’s Map/Reduce or
Hadoop
Different approaches for efficient storage and access (e.g.
R-trees)



Conclusions

Assimilation of SWOT observations overcomes errors in both
inflows and channel characteristics

Need extensive testing of different approaches in assimilating
observations and modeling errors

One important goal is creating algorithmic framework that

will be used for other study areas
can be released to the broader scientific community

Assumptions for the observation errors, and the spatial
coverage of SWOT do not appear to hinder discharge
estimation



Ongoing & future work

Explicitly model tributaries

Fraternal twin assimilation experiment

A full St. Venant equation solving model (BreZo) to represent
“truth”
LISFLOOD as the core of the assimilation system

Evaluate different assimilation techniques and error covariance
modeling approaches

Assimilate additional SWOT observables (top width, slopes)

Evaluate information content of SWOT observations

Estimate river channel bathymetry
Calibrate hydrodynamic and hydrologic models


