'O" Centre de Recherche Public f; m
TUDelft
Delft University of Technolog

Gabriel Lippmann UMNIVERSITEIT
| PP GENT

Assimilation of remote sensing-derived water stage
data into coupled hydrologic-hydraulic models:

Proof of concept study

Matgen, P., Giustarini, L., Pauwels, V.R.N., Plaza, D., Savenije, H.H.G.

Lisbon, Portugal, 18-22 October 2010



'0" Centre de Recherche Public
Gabriel Lippmann UNIVERSITEIT
Y PP VERSI

Motivation fupelt

The way remote sensing data is traditionally used in flood management:

- Purely reactive service (e.g. Charter activities)
- Extraction of flooded areas

- A posteriori calibration of flood inundation models

Objectives of this research activity:

- Introduce the z and t dimensions in flood inundation mapping based on remote
sensing data

- Optimize flood predictions through the assimilation of remote sensing data

Hypothesis:

- Remote sensing-derived water levels, through data assimilation, can significantly
Increase the quality of near real-time flood inundation forecasts
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Synthetic experiment fubelt
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Study site FDelft
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Hydrologic model fubelft
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Community Land Model (CLM)

e Fully
process-based
water and energy
balance model.

Multiple land
cover types can
be represented
within one grid
cell.
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Hydraulic model fubelft

Inputs: |Outputs:

® River reach geometry ® Discharge

HEC-RAS

® Boundary/initial conditions ® Water level

® Flood event characteristics ® [lood extent

UPSTREAM

HEC-RAS:
® 1-D flood propagation.

® Numerical solution to
the de Saint-Venant
equations.

Model parameters:
channel and floodplain
roughness values.

DOWNSTREAM
Normal Depth
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The Particle Filter: Introduction FUDelft

* One of the assumptions of the Kalman filter is Gaussianity of the
observation and model errors, which is frequently not met in
practice

 This can lead to a suboptimal functioning of the algorithm

* In the particle filter, the assumption of Gaussianity Is
relaxed

 Fundamental principle: represent the required posterior density by a
set of random samples and weights and to compute estimates based on
these samples and weights

* In other words, N, particles are generated, each with a state vector x;
and weight w;
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The Particle filter: Procedure FUDelft

1. Generate particles from a known distribution, assign the same weight
to each particle, and apply the model

2. If an observation becomes available, calculate the weight of each
particle. One way to do this, is through the use of a Gaussian likelihood,
for each observation | of the N, observations.The value of the state
variables does not change

3. The weighted mean corresponds to the state estimate at time step k

4. Finally, the particles are re-sampled in proportion to their weight. A
number of particles will have equal state variables. However, they are
forced with disturbed forcings and have different parameters, so after one
time step their values will be different

5. Re-initialize and apply model
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The Particle filter: Procedure FUDelft
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Assimilation scheme fupelt
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Results: Generation of ensembles £ )Delft

\)

» Parameter sets and forcing data of each particle are obtained by adding a
random error (with known distribution) to the parameter set and
meteorological forcings.

* It is expected that on average the ensemble mean differs from the
observation by a value that is equal to the time average of the ensemble

Discharge 2003

Ensemble Members

Ensemble Average

Observations

Simulations (m’s™)

Time Step (Days)
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Results: Generation of ensembles £ )Delft

Upstream boundary
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Results: Water stage assimilation fupeift
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* For lower observation errors, fewer particles are retained, and many replicas of the
particle closest to the synthetic truth are created.

* 30 cm observation error is considered as a realistic value
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Results: Water stage assimilation

Upstream Boundary
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Results: Water stage assimilation fupeift
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Results: Water stage assimilation fupeift

* At the time step of the update, the model error is strongly reduced, but
the improvement disappears immediately at the upstream boundary.

 Further downstream the improvement disappears after a couple of
time steps.

» Data would thus have to be assimilated at each time step, which is not
realistic!

* The real problem is bias in the model results. The Particle filter (and
also the Kalman filter) is a method designed to filter noise, not
systematic errors.
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* At the assimilation step k, the estimate of the water stage E(x,) is used to retrieve the
corresponding estimate of the discharge E(Q,), using the internal rating curve.

* At any time step k during the flood event, the discharge input is corrected as follows:

AQ, = Qk —_E(Qk)

Qxk
Where is the average of the hydrologically modeled discharge.

*The assumption is then made that relative errors remain constant throughout the flood event.
In other words, the absolute error increases as the discharge increases and vice versa, but with
the same relative difference.

At any time step i the inflow corrected is corrected as follows:

Q' = Qi — QAQ

and used as input for the hydrodynamic model.
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Results: Water stage assimilation fupeift
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Results: Water stage assimilation fupeift
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Conclusions fupelt

1) Because of the non-Gaussianity of the modelled ensembles and the observations
the Particle Filter has been used as assimilation algorithm.

2} Remote sensing derived water stages allow sequentially updating flood forecasting
models

The performance of the filtering depends on the quality of data, significant model
improvements are achieved with sigma < 0.7 m

4 ) For water stage assimilation, the impact of assimilation deteriorates almost
immediately. This is due to to the impact of errors in the upstream boundary. An
correction scheme has been developed to solve this problem.

The required imaging frequency depends of the time correlation of model errors, in our
case study the sampling frequency had to be < 24 hours during the rising limb of a
flood
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Open questions fubelft

1) Does the filter work with real event data ?

2) Can the filter easily adapt to spatially variable non gaussian
distributions of water stage observations ?

3) What to do if other sources of error come into effect (e.g. lateral
iInflows, hydraulic model parameters, geometry errors etc. ) ?
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Case study: Remote sensing data fuDeift

Data ascquisition:

- ERS-2 SAR
- ENVISAT ASAR
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Case study: Water stage retrieval

%
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— _ Sources of uncertainty:
e ASAR image
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Results: Water stage assimilation

ERS-2 SAR
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- Effectiveness highly variable in space
- Bias in observations needs to be removed prior to assimilation
- Model performance not uniform
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Towards operational use fuDelft

1 Time for acquisition, data delivery and image processing needs to be reduced

Possible solution: multi-mission data, grid technologies

2 Problem related to skewness in observation data needs to be addressed

Possible solution: upcoming SWOT mission, high resolution SAR imagery

3 Lack of sufficient topographic data

Possible solution: global DEM data for estimating channel bathymetry
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Questions ?

~7N Hydrology and
GG Earth System

Sciences

Towards the sequential assimilation of SAR-derived water stages
into hydraulic models using the Particle Filter: proof of concept

P. Matgenu, M. Montanari’ sR. Hostache!, L. Pﬁsterlﬁ L. Hoﬂ'mannl, D. Plazaz, V.R.N. Pallwelsﬂ G. J. M. De
Lannoy?, R. De Keyser®, and H. H. G. Savenije*

Project website: Recent paper:
http://lhwm.ugent.be/hydrasens/ Matgen et al., HESS, 14(1), 2010

Emalil: matgen@lippmann.lu
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