

Assimilation of submesoscale observations into ocean models

J. Verron & J. M. Brankart, O. Titaud, P. Brasseur, E. Cosme, L. Gaultier LEGI/CNRS, Grenoble



#### Ingredients of the talk ...



- 1. Data assimilation and the submesoscale observations
  - The general problem, new challenges
- 2. An exploratory/preliminary study
  - Submesoscale observations treated as image informations

# 1. Data assimilation (DA) and submesoscale observations

#### Assumption

 Submesoscales are a "useful" part of the ocean dynamics spectrum (Klein, Ferrari, etc...)

#### • Questions:

- What will we do with submesoscale observations when we have them from SWOT for example ?
- Are we doing well to use submesocale observations of SST or ocean color satellite data ?
- How this influence our way of thinking DA?

#### • First order answer:

 DA efficiency is dependent of the numerical model quality, which in turn, depends strongly on the resolution

## The SWOT case



- O(1km) resolution data
- In 2020, global models should reach O(1km) resolution but not solve well 1 km processes
- But, in 2020, plenty of regional models will do it
- Will the OGCMs be able to represent the actual submesoscale physics (probably not) ? Will SWOT data be "observables" in OGCMs ?

## **DA new challenges**

#### DA will have to deal with

- New practical complexities
  - Size of data sets and of model state vectors
  - More nested model systems
- Growing theoretical complexities
  - Increase of non-linear effects
  - Non-Gaussian statistics

#### • New avenues for DA may be:

- Building better parameterizations, DA not necessarily for state estimation (Wirth & Verron, 2010)
- Multiscale DA

...

 Image DA (as a complement, not alone): Information from tracers, biology, "movies"

## **DA new challenges**

- DA will have to deal with
  - New practical complexities
    - Size of data sets and of model state vectors
    - More nested model systems
  - Growing theoretical complexities
    - Increase of non-linear effects
    - Non-Gaussian statistics
- New avenues for DA may be:
  - Building better parameterizations, DA not necessarily for state estimation (Wirth & Verron, 2010)
  - Multiscale DA
    - Image DA (as a complement, not alone): Information from tracers, biology, "movies"

# 2. An exploratory/preliminary study of submesoscale DA

### Objectives:

- Assimilation of submesoscale observations into ocean models for the control of larger scales:
  - Is it feasible ? Can we use data proxies ? Image data ?
    - Are Lyapunov exponents a reliable proxy/image ?
  - Can we make the link between altimetry and ocean color ? between physics and biogeochemistry ?

### • An exploratory study:

(Inspired by D'Ovidio et al. 2004, 2009 and Lehan et al. 2007 works on the characterization of submesoscales by Lyapunov exponents)

- Twin experiment approach:
  - Truth assumed to be known
- Step 1:
  - Are Lyapunov exponents invertibles to larger scale ocean circulation ?
- Step 2:
  - Are submesoscale ocean color images invertibles to larger scale ocean circulation ?

## Step 1:

## Are Lyapunov exponents invertibles to larger scale ocean circulation ?



At this stage characterized by Lyapunov exponents Mesoscales For example velocity fields

## **Methodological approach**

#### Data:

- A North East Atlantic dataset (POMME region )
- AVISO altimeter data (Topex/Poseidon, ERS1/2, Jason, ENVISAT satellites)
- 1992-2008 period: 16 years
- 1/3 resolution
- Weekly anomalies + Mean sea surface: 798 weekly mesoscale velocity maps
- Lyapunov exponents (FSLE) computed from those velocity fields at 1/18 resolution
- Reference
  - One specific day taken as truth









#### Definition of a cost-function

- **Classical data:** data and model variable linked by observation operator
- Proxy data: data and model variable linked by proxy observation operator
- Image data: both data and model variables are converted into images, only the images "speak" together, not the actual variables

#### Solving the inverse problem: there is a cost function minimum which can be identified

- Sensitivity studies
  - Studying the variations of the cost function (FSLE misfits) as a function of velocity errors
  - Exploring the error space proposed by the AVISO datasets
- Inversion:
  - Actually minimizing the cost function and identify the minimum
    - Simulated annealing algorithm

## The FSLE as proxy data

• Minimize

$$J = J_{P} = || y^{p} - H^{p} x ||$$



## Transform the Lyapunov exponents into (very simple) images

- Observed image structures are extracted using a binarization of the gradient norm
- Y= 1 if || δY || > σ otherwise
   Y=0
- The threshold σ is chosen such a given percentage of pixels are kept (80%)
- 1/18 resolution for FSLE, FSLE image, velocity control at AVISO scale (1/3)





Skeleton image

## The FSLE as image data

Minimize

$$J = J_I = || I_D - I_M ||$$



## The FSLE as image data (2)

Reconstruction of ocean currents from FSLE patterns by simulated annealing: iteration 000001



## Step 2:

## Are submesoscale ocean color images invertibles to larger scale ocean circulation ?



## Methodological approach

- Data extraction from the GYRE numerical experiment database (Lévy et al., 2009)
- Double-gyre Gulf Streamlike experiment
- Coupled physicobiogeochemical model (NEMO-LOBSTER)
- 1/54 resolution
- 6 by 6 box extracted from the full domain



#### es nt Se $\int \frac{28}{27}$ $\int \frac{2}{26}$ -74 -72 -72 -71 -72 -71 -70Longitude (Degree)

### Generation of phytoplancton (or SST) images

- Observed image structures are extracted using a binarization of the gradient norm
- Y= 1 if || δY || > σ otherwise
   Y=0
- The threshold σ is chosen such a given percentage of pixels are kept (e. g. 80%)
- Computed on 1/54
   resolution (velocity field at 1/4 )

 -74
 -73
 -72
 -71
 -70
 -69

 Skeleton image
 -74
 -73
 -72
 -71
 -70
 -69

.18 .17

.15

.14 .13

.12

.11

.1

.09 .08

.07

.06

## **Phytoplanction as image data**

Minimize

$$J = J_I = || I_D - I_M ||$$



## SST as image data

• Minimize

$$J = J_I = ||I_D - I_M||$$



## Conclusions

- Lyapunov exponents (FSLE) can be inverted to larger scales
  - Submesoscales must be used to (partly) control mesoscales and larger scales
    - Other data such as altimetry certainly necessary (complexify the cost function, provide first guess, ...)
  - A way to parameterize submesoscale effects in eddyresolving only models ?
    - Here: 1/18 into 1/3
    - Range of validity of strain effects ?
  - Sensitivity study and inversion performed, full DA to be done
- Phytoplanction (or other tracers such as SST) invertible to larger scales
  - Feasibility of the phytoplanction/SST inversion
  - Resolution factor: 1/54 into 1/4
  - Sensitivity study performed (more required), full inversion and DA to be done

## **Conclusions (2)**

- Ocean dynamics and ocean biogeochemistry "talking together" through image structures
  - Ocean Color data might be used to control ocean physics
- Limits:
  - Twin experiment context
  - Limits of Lyapunov exponent image and physical representations
  - Limited effort dedicated on image generation (binarization)...
  - Data assimilation specific (minimization, non-linearity, ...)
  - Etc...
- Next
  - Setting up the full submesoscale DA system in a coupled physico-biogeochemical model