Coupled Ocean-Atmosphere Interaction on the Oceanic Mesoscale Larry W. O'Neill<sup>1</sup>, Dudley B. Chelton<sup>2</sup>, Peter Gaube<sup>2</sup>, and Michael Schlax<sup>2</sup> <sup>1</sup>Naval Research Laboratory, Monterey, California <sup>2</sup>Oregon State University, Corvallis, Oregon

Overview of surface wind-SST coupling near SST frontal zones as observed by satellites on spatial scales of ~50-1000 km

 Wind-SST interaction over ocean eddies using eddy-tracking procedure based on merged SSH fields

•

•

Example of feedbacks of wind-SST coupling onto the ocean







- QuikSCAT scatterometer
  - Surface wind stress magnitude



Filtered to remove variability with wavelengths longer than 20° long. x 10° lat.



- QuikSCAT scatterometer
  - Surface wind stress magnitude
- Advanced Microwave Scanning Radiometer on EOS-Aqua (AMSR-E) (June 1, 2002-present)
  - Sea-surface temperature (SST)



Contours of filtered AMSR-E SST with c.i.=0.5°C (solid=warm, dashed=cool) Filtered to remove variability with wavelengths longer than 20° long. x 10° lat.





- QuikSCAT scatterometer
  - Surface wind stress magnitude
- Advanced Microwave Scanning Radiometer on EOS-Aqua (AMSR-E) (June 1, 2002-present)
  - Sea-surface temperature (SST)



Contours of filtered AMSR-E SST with c.i.= $0.5^{\circ}C$  (solid=warm, dashed=cool) Filtered to remove variability with wavelengths longer than 20° long. x 10° lat.



## Spatially-filtered QuikSCAT wind stress magnitude (colors) and AMSR-E SST (contours) averaged for 6/2002 to 5/2009



Enhanced stress over warmer water and reduced stress over cooler water

Stress varies greatly between seasons, however...

Contours are spatially high-pass filtered AMSR-E SST with a contour interval of 0.5℃ (solid=warm, dashed=cool)



colors => Filtered QuikSCAT wind stress magnitude

contours => Filtered AMSR-E SST with c.i.=1°C (solid=warm, dashed=cool)



colors => Filtered QuikSCAT wind stress magnitude

contours => Filtered AMSR-E SST with c.i.=1°C (solid=warm, dashed=cool)

## Spatially filtered wind stress magnitude and SST averaged for JJA (2002-2008)



# Spatially filtered QuikSCAT wind stress magnitude and SST averaged for DJF (2002-2009)

**NH** Winter

SH Summer



## QuikSCAT wind stress magnitude vs. SST



### **DJF, JJA**

Wind stress response to SST varies significantly between summer and winter

Differences in slopes between summer and winter indicate that seasonal stress differences not due to seasonal mesoscale SST variability



## QuikSCAT wind speed vs. SST



# Why is there a seasonal cycle in SST-induced wind stress perturbations but not wind speed?

## $|\tau| = \rho_0 C_{d10n} V_n^2 \qquad C_{d10n} = \frac{a_0}{V_n} + b_0 + c_0 V_n \qquad \rightarrow \qquad \frac{|\tau|}{\rho_0} = a_0 V_n + b_0 V_n^2 + c_0 V_n^3$

Wind stress response to SST is relatively stronger when the background winds are stronger during the winter. Seasonal cycle in SST-induced wind stress may be a significant source of seasonal variability in the ocean near large-scale SST frontal zones.

In this examp(O;Neiffset aft;t2010;0). Climate, submitted, larger with the stronger background winds.

# Wind-SST interaction over propagating ocean eddies using a global eddy-tracking procedure

• Census of ocean eddies using a new global eddy tracking procedure based on merged anomaly SSH fields using 2 simultaneous altimeters (from the so-called AVISO Reference Series)

- 16 year period Oct 1992-Dec 2008 at 7 day intervals
- Tracking algorithm used here (Chelton et al. 2010, *submitted to Prog. Oceano.*) differs substantially from Chelton et al. (2007; *GRL*)

## Cyclonic and Anticyclonic Eddies with Lifetimes ≥ 16 Weeks (35,891 total)



# Cyclonic and Anticyclonic Eddies with Lifetimes $\geq$ 6 Months (17,252 total)



## Cyclonic and Anticyclonic Eddies with Lifetimes ≥ 12 Months (4396 total)



# Cyclonic and Anticyclonic Eddies with Lifetimes ≥ 18 Months (1494 total)



## Cyclonic and Anticyclonic Eddies with Lifetimes ≥ 24 Months (620 total)



### Distributions of Eddy Lifetimes and Propagation Distances from 16 Years of SSH Fields in the AVISO "Reference Series"



Overall, there is a slight preference for cyclonic eddies, and a significant preference for anticyclonic eddies with long lifetimes and long propagation distances.

### Eddy Tracks Midlatitude Eddies Selected for this Study July 1999 - December 2008

3871 Cyclones in Blue, 5938 Anticyclones in Red



- Eddies that originating between  $\pm 20^{\circ}$  and  $40^{\circ}$  with lifetimes  $\geq 12$  weeks
- A total of ~400,000 eddy observations were used to create composite averages



## SST-induced Wind Speed Perturbations Over Eddies

### SST–Wind Interaction in Coastal Upwelling: Oceanic Simulation with Empirical Coupling

XIN JIN, CHANGMING DONG, JAISON KURIAN, AND JAMES C. MCWILLIAMS

Institute of Geophysics and Planetary Physics, University of California, Los Angeles, Los Angeles, California

DUDLEY B. CHELTON

College of Oceanic and Atmospheric Sciences, Oregon State University, Corvallis, Oregon

#### Zhijin Li

NASA Jet Propulsion Laboratory, Pasadena, California

#### A "25-Cent" Empirical Coupled Model:

- Based on:
  - the ROMS model of an idealized eastern boundary current system with a straight coastline.
  - QuikSCAT-based empirical coupling coefficients for the feedback on the ocean.
- The winds are modified at each time step to conform to the empirical coupled relations among SST gradients, wind direction, and the local curl and divergence of the wind stress.
- This leads to an evolving modified wind obtained by inverting the diagnosed curl and divergence fields, while maintaining the original wind values on the open-ocean boundary.



Temporal Evolution of the Eddy Field



Note the weaker cross-shore gradient of SST and the weaker eddy kinetic energy in the coupled model run.

Jin et al. (2009, J. Phys. Oceanogr.)



- Near SST frontal zones and ocean eddies, surface winds are stronger are warmer water compared to nearby cooler water.
- Evidence is quickly emerging that these wind-SST interactions feedback onto the ocean, which influence largescale basin circulations, coastal upwelling zones, Ekman pumping, and the eddy field.



Surface Vorticity (Normalized by f) on Day 160

In the coupled simulation, cyclonic eddies (red) are weakened and there is a much greater abundance of anticyclonic eddies (blue).

Jin et al. (2009, J. Phys. Oceanogr.)

The Average Nonlinearity Parameter U/c in 1°x1° Bins



The importance of nonlinearity can be assessed from the ratio of nonlinear advection to acceleration, which scales as  $\frac{u \cdot \nabla u}{\partial u/\partial t} \sim \frac{kU}{\omega} = \frac{U}{c}$ 

# Distributions of Nonlinearity Parameter *U/c* in 3 Latitude Bands for Cyclonic and Anticyclonic Eddies

The characteristic fluid velocity U within the eddy interior is based on the average geostrophic speed around the SSH contour with maximum average geostrophic speed, and the translation speed c is computed from the eddy tracking.



## **Composite Medians of Vorticity**

30-day 2x2 and 6x6 Horizontally Normalized

### -Wind Vorticity QuikSCAT







Counterclockwise Rotation





## Cross-spectral statistics in zonal wavenumber domain for wind speed and SST



Computed from weekly-averaged QuikSCAT and AMSR-E wind and SST fields

-At zonal wavelengths of <20°, spectral phase shows SST leads wind speed

-Since winds are predominantly westerly in these regions, this indicates SST forces the surface wind speed

-At longer wavelengths, wind speed leads SST, indicating wind speed forces SST

## Satellite-moored buoy comparison methodology



Test the hypothesis that the wind speed difference  $V_{10nB}$ - $V_{10nA}$ = $\delta V_{10n}$  depends on the SST difference  $T_{SB}$ - $T_{SA}$ = $\delta T_{S}$ 

This hypothesis is tested in a very simple way, first from moored buoys, to provide a means to compare the satellite wind response to SST with buoys.

# 17 buoy pairs in the Gulf Stream and eastern equatorial Pacific



Buoy-measured wind speed differences are correlated positively with and related linearly to the SST differences.

No height or stability corrections applied to buoy wind measurements.

> 2 3

**Equatorial Pacific** 





**Gulf Stream** 

mu#

N=12887

ρ=0.49 Slope=0.2

a) Buoy δV vs. δT

c44140. T C44138

44008 - 44004

4

-2 0 2

-4

# Comparison between buoy and satellite wind responses using the slopes of the linear $\delta V_{10n}$ vs. $\delta T_s$ relation



Response of 10-m ENWs from QuikSCAT similar to most buoy pairs, although biased low over the south equatorial Pacific.

A similar analysis with AMSR-E winds in place of the QuikSCAT winds show a nearly identical result.

# Slopes of linear relationship of buoy heat and buoyancy fluxes to $\delta T_{\text{S}}$



- Buoyancy flux response to SST slightly smaller over equatorial Pacific and Gulf Stream, although fractional contribution of latent and sensible heat fluxes much different

- Sensible heat flux response to SST about half as large over eq Pac compared to Gulf Stream

- Latent heat flux response to SST more than twice as large over equatorial Pacific than over the Gulf Stream

# Spatially filtered QuikSCAT *wind speed* (colors) and AMSR-E SST (contours) averaged for June-2002 to May-2009



Average June 2002–May 2009

Colors = spatially filtered QuikSCAT wind speed

Contours = spatially filtered AMSR-E SST with a c.i. of 0.5℃ (solid=warm, dashed=cool)

## Comparing 10-m Neutral and Actual Wind Speed Relative to Surface Ocean Currents



- Computed using similarity theory-based state-of-the-art COARE 3.0 bulk flux algorithm (Fairall et al. 2003) using methodology of Liu and Tang (1996)
- According to similarity theory, difference between 10-m neutral and actual wind speed:
  - Is very significant in extremely stable and low neutral wind speed conditions
  - Decreases very rapidly for increasing wind speed in both stable and unstable conditions
  - Is relatively small in unstable conditions for all neutral wind speeds
- This effect is not related to the turbulent mixing mechanism of Wallace et al. (1989) and Hayes et al. (1989)