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Introduction

Scope of the work

Sea State Bias impact on the elevations measurements of the futur
instruments : interferometric large swath Radar
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A quick introduction to the SWOT mission
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Hydrology and Oceanography mission

high spatial resolution global measurments of ocean surface
topography

120 km wide swath with a +/- 10 km gap at the nadir track
KaRin instrument

Ka Band 35.6 GHz
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The standard mode
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The ping pong mode
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Simulation principles
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Even simple methods like the Kirchoff approximation suffer from
intractable numerical burden when it comes to integrate large ocean
surfaces (some km2) at the radar wavelength resolution (some cm2).

Our approach has been to adopt a two-scale integration scheme.

The ocean surface is coarsely subdivided (1m scale pixels) and the
elevation at this scale is explicitly integrated.

The contribution coming from shorter scales within the pixels of
resolution is accounted for in a statistical manner

the pixel resolution is not linked to the radar resolution
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The Sea Surface contribution
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The Sea Surface contribution

The Sea Surface contribution 2/2

the LW and SW ocean power spectrum used are parts of the Unified
Elfouhaily spectrum [Elfouhaily, 1997]

the non linear transformation of the is carried out by the Choppy
Wave Model [Nouguier 2009]

based on first order expansions of particle trajectories in Lagrangian
coordinates.
expressed as an horizontal deformation of a reference linear surface,
instead of vertical one as most weakly nonlinear models do

the hydrodynamics modulations are carried out by the first order
(linear) Modulation Transfer Function [Elfouhaily, 2001]
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The Complex Signal calculation
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W (pq)(t) =
iλ
4π

∑
n

g1
(pq)g2

(pq)

R1R2
S δ (t−tAR−

fD
K

) ei
fD
K

(kc−πfD)e−ik(R1+R2) (1)

the sum is made over all the pixels describing the surface

g1 and g2 are the antenna gain of the emiting/receiving (rectangular)
antennas (resp.)

R1 and R2 are the distance from the emiting/receiving antennas
(resp.) to the pixel

S caracterize the scattering (σ = 4π|S|2)

fD is the doppler frequency

δ() is the dirac function : the impulse response is simulated by a
convolution after the summation.
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Processing

Processing 2/2

Misregistration decorrelation : Channel Corregistration

the sampling of the 2 antennas is different since the difference of the
view of the scene by the two antennas
on board algorithm : phase ramp applied within the range compression
block

ei(a∆dω(±Td +n∆t)), (2)

for the sake of simplicity, the corregistration is carried out during the
attribution of the pixel to a range gate

The geometrical decorrelation : Spectral shift

frequency shift due to slightly difference of the view of the scene by the
two antennas
on board algorithm : phase ramp applied in the time domain

ei∆ωs (θi )t (3)

the frequency shift ∆ωs(θi ) is a function of the incidence angle
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Conclusion

Conclusions

High resolution simulator

the modular design alllows to compare different configurations and to
isolate the effects of each new feature on the SSB.
the validation relies on the validation of the simulator in the
conventionnal Ku configuration.

Sea Surface validation in progress

Possibility to test the impact of the on board processing on the SSB
(coregistration)

Thank you for your attention
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