

Determination of the absolute bias for Jason using the Gavdos facility

S. P. Mertikas

18 October, 2010 OST-ST Meeting, 18-20 October, 2010, Lisbon, Portugal.

Gavdos/Crete Cal/Val site

Jason, Envisat and GFO tracks

Cal/Val Facilities: Gavdos, Crete

Transponder site @ cross-over

Principle of operation Pass 109

Calibration regions

Geophysical Correction Models

Correction type	Pass No 109		Models Employed	
PCA	Satellite's Point of Closest Approach to the tide gauge			
Calibration Area	South Leg (12-21 Km)	North Leg (10-25 K	(m)	
lono	[-21 to -1] sec from PCA	[2 to 5] sec from P	PCA A	Average
Dry	[-10 to +2] sec from PCA	[2 to 5] sec from P	CA L	Linear fit
Wet	[-15 to -5] sec from PCA	[2 to 5] sec from P	PCA L	Linear fit
SSB	[-10 to +1] sec from PCA	[2 to 5] sec from P	CA (Cubic polynomial Fit
MDT			F	RioMed
N (Geoid)			l	Local geoid campaigns
MSS			ı	MSS_CNES_CLS_10
GNSS Coordinates			I	ITRF2005

Bias: Descending Pass No.18

Bias: Ascending Pass No.109

Cycles 30, 31 excluded, because no tide-gauge data were available.

Cycle 18, 27 excluded because of sigma bloom.

Wet Tropo wrt GPS

Wet Tropo wrt coast

The Brown model (right) for the wet tropospheric delay along the north leg of pass No. 109 and closer to the coastline.

Ionosphere wrt GPS

Transponder calibration

- Altimeter calibration with transponder after 1-Jan-2010 over pass No.18;
- Collaboration with CNES (France) to set the altimeter to calibration mode;

- Experiment Date: 2010/09/13 23:33:53, Pass No. 18;
- X-axis: Range window with 128 bins of time (bin= 3.125 ns);
- Y-axis: Power return;
- Bin No. 46 preset to closet approach to the distance between satellite-transponder;

GPS Kinematic Surveys

- Calibrate satellite with GPS buoys;
- Two GPS buoys;
- Vessel for field campaigns;
- Kinematic surveys carried out in Aug and September 2010 along passes No. 18 and No. 109;

GPS Buoy & field campaigns

New transponder

- Central frequency 13.575 GHz, bandwidth = 350 MHz;
- Polarization: Circular;
- Mobile (for new locations) and modular (for other frequencies).
- Capable for record incoming & outgoing signal at the transponder;
- Controlled remotely through control computer using communication links.
- Capable for monitoring internal delays (± 1mm);

New transponder

- Constructed under the ESA specs and supervision;
- Ready be delivered in 2010;
- Easily transferred to new locations in Crete;
- Add module for new satellites (AltiKa: 35.75 GHz, 500 MHz)

Summary

- The absolute bias for the Jason-2 altimeter has been determined as
 - B= $+171.19 \pm 4.5 \text{ mm}$ (Ascending Pass No.109, Cycle 2-74)
 - B= $\pm 172.85 \pm 6.0$ mm (Descending Pass No. 18, Cycle 1-40);
 - 20-Hz, in the Ku-Band;
- Altimeter bias with the MSS (B=+151.68 mm, No. 109, CLS01).
- GPS buoys deployed as the satellite flies over. Processing on-going.
- Field sea-surface campaigns have been performed along satellite ground tracks to validate the used geoid models.
- Currently, analyzing transponder data collected as of July 2009.
- A new transponder is being developed to:
 - Calibrate satellite altimeters and determine bias, and;
 - Determine the orientation of the satellite interferometer baseline.

Co-authors, contributors

- Technical University of Crete:
 - S. P. Mertikas; A. Daskalakis, X. Frantzis, A. Tripolitsiotis, P. Partsinevelos, D. Andrikopoulos.
- Austrian Academy of Sciences, Austria:
 - Walter Hausleitner,
- Aristotle University of Thessaloniki, Greece:
 - I. N. Tziavos; G. S. Vergos.
- University of Aegean, Greece:
 - V. Zervakis.
- CNES (France): N. Picot and J-D Desjonqueres.

