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Context of the study

However, consecutive altimetric waveforms are representative of continuous ocean surfaces
and it seems promising to account from previous WFs when estimating the ocean parameters

• A first step has been done by JPL (E.Rodriguez) when processing the 10 Wfs of the 1s
WF-packet at the same time (Topex retracking in RGDR) and solving for 10 ranges but
only one SWH and one sigma0 per second
• We have been investigating a Bayesian approach combining information coming from
the data (contained in the likelihood) and prior knowledge regarding unknown parameters
(contained in the parameter prior distribution)

In the current retracking procedures, waveforms are processed independently from the
previous ones by comparing the measured altimetric waveform with a return power model
(Hayne model) according to least square estimators.
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The altimetric signal is modeled using a Brown model

is a multiplicative speckle noise (L: number of integrated pulses)

k=0,…,K-1 ; K nb of WF samples

The likelihood of the estimation vector y (the waveform) is :

where θ is the unknown parameter vector (τ, SWH,Pu,…)
y is the observed waveform y=(y0,…,yK-1) with independant noise samples
f(y/θ) is the product of K Gamma probability density functions

No analytical expression for the Maximum Likelihood Estimator of θ
We currently use a quasi Newton method (approximate solution)

The Maximum likelihood Estimator (MLE) of θ is : 

Mathematical formulation
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The posterior distribution of θ is defined as :

where y is the observed waveform and θ is the unknown parameter vector (τ, SWH,Pu, …)

Bayesian estimation : principle

Two possibilities to achieve the estimation of θ
• the minimum mean square error (MMSE)

(mean of the posterior distribution) 

• the maximum a posteriori (MAP)
(method investigated some years ago by 
E.Rodriguez on Topex data)

« A priori » function
also called prior
distribution

Likelihood function = information 
coming from the data
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Prior distributions summarize the available information regarding the unknown parameters. 
Different scenarii have been investigated

• Uniform distributions on appropriate intervals,

• Priors computed from parameter estimates along a cycle (fitted by splines),

• Time-varying prior distributions (dynamic distribution=Gaussian distribution centered

on the previous estimation).

Example for significant waveheight (SWH)

Prior distributions
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Posterior distributions

• Too complex to derive analytical expression for the MAP and MMSE estimates of θ
• We used Markov Chain Monte Carlo (MCMC) methods which consists in building
a Markov Chain θ(t) to generate samples distributed according to the a-posteriori
distribution

(more details in Severini, Mailhes, Thibaut and Tourneret, IGARSS proceedings, Boston, 2008)

• A hybrid “Metropolis-within-Gibbs” algorithm has been used to generate candidates
according a given pdf with an accept/reject procedure.
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Results on simulation

With uniform priors

Δ : pseudo MLE, o : Bayesian estimator
• Pseudo MLE and Bayes algorithms perform similarly for the parameters Pu and τ
• Better performance for SWH using the Bayesian method.

Amplitude Epoch SWH
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Results on simulations

With dynamic priors

Δ : pseudo MLE, o : Bayesian estimator
Prior distributions at time instant t are defined as Gaussian densities N(m; σ2), with m = θ(t-1) 

and an appropriate variance σ2,
Performance

• similar for the estimation of Pu
• Gain for τ
• Gain for SWH

Amplitude Epoch SWH



(Jason-2 - tracks 1 to 20 from cycle 16)
Results on SLA

• Small reduction of the SLA noise
• Bayesian depends on priors

Products
SLA from MLE3
SLA from Bayesian with MLE4 priors
SLA from Bayesian with filtered SWH priors

SLA Power Spectrum (on 20Hz estimates)
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Results on SWH

• Strong noise reduction using a filtered prior
• Results linked to the prior choices
• Small biases because products are LUT corrected

Bayesian estimates are not corrected

SWH Power Spectrum (on 20Hz estimates)

Products
SWH from MLE3
SWH from Bayesian with MLE4 priors
SWH from Bayesian with filtered SWH priors
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(Jason-2 - tracks 1 to 20 from cycle 16)

Results on real data
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Results on sigma0

• Strong noise reduction on this parameter

Products
σ0 from MLE3
σ0 from Bayesian with MLE4 priors
σ0 from Bayesian with filtered SWH priors
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(Jason-2 - tracks 1 to 20 from cycle 16)

Results on real data
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• Very promising results
• The method gives the a-posteriori distribution and the confidence 

interval of the estimations
• However, time consuming method
• This method could be used localy or for very precise estimations 

(bathymetry) or high rate mean profiles (20Hz)
• Results could be compared with the two passes method developed by 

NOAA (W.Smith) on typical situations
• Simulations have been done on Median tracking cycles : improvements

expected on Diode/DEM cycles. To Be Evaluated …
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Conclusions



Page 13


