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1.INTRODUCTION 
Tailleux and McWilliams (2001) previously proposed that the observed 

intensification of baroclinic Rossby wave speed observed by Chelton and 

Schlax (1996) could be the result of the surface intensification of the 

Rossby waves by processes decoupling upper ocean dynamics from 

bottom ocean dynamics. Processes that could cause such a decoupling 

are rough topography, nonlinear interactions, or even bottom friction. 

Such mechanisms do not include a background mean flow. Given the 

importance of surface intensification proposed by Tailleux and McWilliams 

(2001), we felt that mean flow effects might be of secondary importance 

compared to bottom-topographic effects, but the opposite was argued by 

Killworth and Blundell (2004). Here, we discuss the possibility that surface 

intensification be entirely due to the background mean flow, rendering the 

bottom boundary condition ineffective.

2. SCHRODINGER EQUATION FOR LINEAR ROSSBY WAVES

4.RAY APPROACH

3. ANALYSIS OF THE POTENTIAL

5. CONCLUSIONS The generalized eigenvalue problem accounting for a background mean flow and topography previously developed 

by Killworth and Blundell (2004), and corrected by Tailleux and Maharaj (2010) can be transformed into a Schrodinger equation, which is 

the form suitable to investigate the possibility for a background mean flow to trap Rossby wave energy near the surface. Preliminary 

results based on a ray approach suggests the possibility of such an effect, which further work will try to confirm.
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Following Chelton & Schlax (1996), mean flow and topographic effects 

are accounted for as part as a generalized eigenvalue problem. This can 

be done from linearized quasi-geostrophic potential vorticity equation, as 

shown in Tailleux and Maharaj (2004), correcting the previous approach 

by Killworth and Blundell (2004) (see companion poster). The eigenvalue

problem corresponding to the pressure perturbation is given by:
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It is possible to show that the transformation F = N G/f yields the 

following classical Schrodinger equation for the function G: 

Where V is the Schrodinger potential, u is the background zonal mean 

flow, c is the zonal phase speed, kx and ky the zonal and meridional

wavenumbers, N the buoyancy frequency, g the gravitational 

acceleration, and H the total ocean depth.

After some manipulation, one shows that the potential can be 

expressed as follows:

For the problem to remain physical, it is necessary to avoid a critical 

layer, i.e., one needs u-c>0 over the whole ocean depth. If so, one 

sees that the first term within brackets contributes to make the 

potential positive, and hence the solution oscillatory in the vertical. 

One sees, however, that vertical shear can sometimes oppose the first 

term to make it negative over some region in the vertical, creating a 

turning point, and the possibility of surface wave trapping. The other 

terms demonstrate that dispersive effects due to finite wavenumbers

can also contribute to make the potential negative, as well as the 

vertical variations in the buoyancy frequency.

In order to investigate the possibility of surface wave trapping, a ray 

tracing approach was developed for the long wave equations, by using 

the following profiles for the zonal velocity and buoyancy profiles:

Fig. 1: longitude/vertical section 

of the zonal profile used in the ray 

calculation (top panel). 

Longitude/vertical section of the 

buoyancy profile (bottom panel).

The resulting dispersion relation, and ray equations are given by the 

following expressions, with the result illustrated in Fig. 2:

Fig. 2: Rays corresponding to the above velocity and buoyancy 

profiles. Such rays display surface-trapping of the energy.

FUTURE WORK:

These preliminary results suggest that a background mean flow 

may be such as to permit the surface trapping of the Rossby

wave energy. Future work will seek to establish the general 

conditions under which this happens, and whether the surface 

trapping is exacerbated by finite wavenumbers, as is suggested 

by the formulation in terms of a Schrodinger equation. 


