Towards regional projections of twenty-first century sea-level change

Caroline Katsman

Royal Netherlands Meteorological Institute (KNMI) Global Climate Division

Aimée Slangen, Roderik van de Wal (IMAU, Utrecht University)Sybren Drijfhout, Wilco Hazeleger(KNMI, Global Climate)Bert Vermeersen(Delft Technical University)

and many more

Regional sea level change

regional variations due to natural variability and spatially varying long-term trends

Coupled climate models

ocean expansion

Coupled climate models

land ice mass flux into ocean

summed contributions of individual components

global mean thermal expansion

glaciers & ice caps

Greenland

Antarctica

summed contributions of individual components

global mean thermal expansion

glaciers & ice caps

Greenland

Antarctica

IPCC 4AR (2007)

summed contributions of individual components \Rightarrow likely, global mean change

global mean thermal expansion

glaciers & ice caps

Greenland

Antarctica

IPCC 4AR (2007)

summed contributions of individual components \Rightarrow likely, global mean change

coastal protection regional change, worst-case scenario

Regional projections

global mean thermal expansion

glaciers & ice caps

Greenland

Antarctica

Katsman et al (2008), Climatic Change

additional local expansion

global mean thermal expansion

glaciers & ice caps

Greenland

Antarctica

Katsman et al (2008)

[AVISO]

changes in ocean dynamics and ocean density

additional local expansion

global mean thermal expansion

glaciers & ice caps

EFFECTS of SELF-GRAVITATION + ELASTICITY

Antarctica

Katsman et al (2008)

additional local expansion

global mean thermal expansion

glaciers & ice caps

Greenland

Antarctica

GIA

a. Peak glaciation
ice sheet
if the she

Information sources

Slangen et al. (Clim. Dyn., 2011)

based on IPCC 4AR (SMB contribution)

using regionally distributed dataset

Cogley [2009] Radić & Hock [2010]

-0.2 -0.1 0.0 0.1 0.2 0.3 0.4

0.2

0.3

12 coupled climate models [CMIP3 database]

0.4

m RSL change

Uncertainty (steric contribution)

regional projection

Slangen et al. (Clim. Dyn., 2011)

[1980-1999 to 2090-2099]

Uncertainty (steric contribution)

regional projection

standard deviation

Slangen et al. (Clim. Dyn., 2011)

[1980-1999 to 2090-2099]

Uncertainty (land ice contribution)

small ice loss

Greenland: 0.07 m Antarctica: 0.01 m [IPCC 4AR]

Uncertainty (land ice contribution)

small ice loss

large ice loss

Greenland: 0.07 m Antarctica: 0.01 m [IPCC 4AR] Greenland: 0.22 m Antarctica: 0.41 m [Katsman et al 2011]

 Changes in continental water storage reservoir impoundment groundwater depletion

Bierkens et al. (in prep)

Fiedler & Conrad (GRL, 2010)

- Changes in continental water storage
- Vertical land movement (natural and human-induced)

- Changes in continental water storage
- Vertical land movement
- Ocean ⇒ ice sheet interactions

glacier acceleration triggered by ocean warming

Holland et al. (Nat. Geosc., 2008)

- Changes in continental water storage
- Vertical land movement
- Ocean ⇒ ice sheet interactions
- Ice sheet \Rightarrow ocean interactions

melt water affects ocean dynamics and sea level

- Changes in continental water storage
- Vertical land movement
- Ocean ⇒ ice sheet interactions
- Ice sheet ⇒ ocean interactions
- Reliable ice sheet contributions

- Changes in continental water storage
- Vertical land movement
- Ocean ⇒ ice sheet interactions
- Ice sheet ⇒ ocean interactions
- Reliable ice sheet contributions
- Uncertainty steric contribution

- Changes in continental water storage
- Vertical land movement
- Ocean ⇒ ice sheet interactions
- Ice sheet ⇒ ocean interactions
- Reliable ice sheet contributions
- Uncertainty steric contribution
- Marginal seas are not resolved

Summary

- Regional sea level rise projections are (for now) inevitably constructed as the sum of contributions from multiple sources
- The resulting projection shows an average rise in the tropics, a larger rise in the Arctic Ocean, and a smaller rise near regions of ice sheet mass loss
- Uncertainties are large; the magnitude of the ice loss has a large impact on the projected pattern
- Many caveats need to and can be addressed in the coming years to improve these first attempts at projecting 21st century regional sea level change

Integrated flood risk assessment

Impacts: Rotterdam harbor

Maeslant storm surge barrier - closure frequencycurrent: once every 10 years

Impacts: Rotterdam harbor

Maeslant storm surge barrier - closure frequency
current: once every 10 years
2100, with extreme sea level rise: once every few years - few months

Impacts: Rotterdam harbor

Maeslant storm surge barrier - closure frequency
current: once every 10 years
2100, with extreme sea level rise: once every few years - few months
- larger chance that closure of the barrier coincides with high river discharge

Regional variations

comparison global means

Ice sheets

Largest potential & largest uncertainty

- How much is melting now and why?
- How much ice can potentially melt and how fast can this happen?

more observations become available our modeling skills are limited (at the moment)

Ice sheet contributions

- Extrapolation current mass loss
- Extrapolation current acceleration of mass loss
- Upper limit glacier discharge
- Possible impacts marine ice sheet instabilities [Katsman et al. 2011]

Model uncertainty

BCCR-BCM2.0

GFDL-CM2.0

GISS-ER

MIROC3.2(hires)

CGCM3.1(T47)

GFDL-CM2.1

GISS-AOM

NCAR-PCM

ECHAM5/MPI-OM

GISS-EH

MRI-CGCM2.3.2

UKMO-HadCM3

Emission scenario

-0.2 0.0 0.2 0.4 0.6 0.8 1.0

Ensemble spread

GIS + AIS

glaciers

steric

GIA

State-of-the-art coupled models

gravitational pull on ocean towards large (ice)mass

ice mass loss \Rightarrow melt water added to the ocean

ice mass loss \Rightarrow melt water added to the ocean \Rightarrow sea level tilts

ice mass loss \Rightarrow melt water added to the ocean \Rightarrow sea level tilts

ice mass loss \Rightarrow melt water added to the ocean \Rightarrow sea level tilts

ice mass loss

 $\Rightarrow melt water added to the ocean$ $\Rightarrow sea level tilts$ $\Rightarrow elastic response Earth's crust$