The Harvest Altimeter Calibration Experiment: Recent Results

Bruce Haines and Shailen Desai Jet Propulsion Laboratory, California Inst. of Tech., Pasadena CA

George Born, Chuck Fowler and Scott Washburn University of Colorado, Boulder

October 19, 2011 Ocean Surface Topography Science Team Meeting San Diego, California USA

NASA Prime Verification Site for High-Accuracy (Jason-class) Altimetry: T/P (1992–2002), Jason-1 (2001–2009) and OSTM/Jason-2 (2008–).

Courtesy PXP

- Open-ocean verification site located 10-km off coast of central California
- Ground track passes directly through this location by design (T/P heritage)
- Rich in-situ data set representing 19 years
 of continuous monitoring
- 365 T/P overflights spanning 10 years
 - 22 in formation with Jason-1 (2002)
 - Final overflight on August 13, 2002
- 259 Jason-1 overflights spanning 7 years
 - 20 in formation with Jason-2 (2008–2009)
 - Final overflight on January 18, 2009

121 Jason-2 overflights and counting...

• Over three years of monitoring

Experiment operations status

- Underwater maintenance: 9/2011
- CU Lidar upgrade: 9/2011
- NOAA maintenance: 8/2010
- Tide gauge outage: 4/2011(antenna repaired)

Platform Harvest Geodetic Height From 19 Years of Continuous GPS Monitoring

Model	TOPEX/Poseidon	Jason-1	OSTM/
			Jason-2
Orbital Height	GSFC std0905 (Lemoine et al., 2010)	GDR-C	T/GDR
Altimeter Range	Ku (MGDR)	Ku (GDR-C)	T/GDR
Wet troposphere	Repro from Brown et al. (2009)	GDR-C	T/GDR
Dry troposphere	MGDR	GDR-C	T/GDR
Ionosphere	MGDR: Ku (ALT), DORIS (POS-1)	GDR-C	T/GDR
Sea-state bias	MGDR	GDR-C	T/GDR

Nominal Time Series:

T/P: MGDR + reprocessed orbits (Lemoine et al., 2010) and wet trop. (Brown et al., 2009); Jason-1: GDR-C; Jason-2: GDR-T

Update 1:

Correct Jason-1 and Jason-2 ranges for errors (biases) from altimeter characterization files (*Desjonquères et al.*, 2009)

Update 2:

Correct Jason-1 and Jason-2 ranges due to inconsistent definition of antenna reference point (Desjonquères et al., 2011)

- Standard GDR correction evaluated 5-s before platform overflight
- EPD evaluated at TCA
 - Improves agreement with GPS
 - Bias values from GPS may not be trustworthy at few-mm level (e.g., radome)

Harvest: Ku-Band Ionosphere Calibration

- Begin with uncorrected Ku- and C-Band Ranges
 - Compensate for troposphere using standard (GDR) approach
 - Correct ranges for characterization (e.g., PRF, internal delay) and ARP errors.
- Estimate SSH bias, drift and local SSB & iono. on each frequency simultaneously
 - SSB model (local to Harvest) is a simple percentage of SWH from nearby buoy(s)
 - Ionosphere is a scaling of TECU from GIM (GPS-based).
- Only Jason-2 C-band SSH bias (+4 cm) significantly different from zero
- C-band SSB shows higher sensitivity to SWH
- Ionosphere scale factors slightly lower than theoretical values: 2.2 (Ku) and 14.3 (C)

	Jason-1 Ku-Band	Jason-1 C-Band	Jason-2 Ku-Band	Jason-2 C-Band
SSH Bias (mm)	+11 ± 7	-1 ± 10	+14 ± 10	+43 ± 16
SSH Drift (mm/yr)	-1 ± 1	-2 ± 2	-2 ± 3	+9 ± 5
Local SSB (%)	3.4 ± 0.2	4.4 ± 0.3	3.6 ± 0.3	4.1 ± 0.5
Iono. (mm/TECU)	2.0 ± 0.2	12.9 ± 0.3	1.4 ± 0.6	13.1 ± 0.9
Number	208	205	98	92
Postfit σ (mm)	31	48	28	42

An Early Glimpse at the OSTM/Jason-2 Preliminary GDR-D

Features corrected Jason-2 ranges, new SSB, orbit, ionosphere and wet troposphere (including EPD)

- Current Jason-2 and Jason-1 GDR SSH too high, by +18 and +9 cm respectively
 - OSTM/Jason-2: $+176 \pm 3 \text{ mm} (\text{N} = 97, \sigma = 26 \text{ mm})$
 - Jason-1: +89 \pm 2 mm (N = 210, σ = 28 mm)
- Primary source of Jason-1 and Jason-2 biases is altimeter
 - CNES corrections to altimeter range (*Desjonquères et al.*, 2009; 2011) reduce biases to 2–3 cm level.
 - Preliminary Jason-2 GDR-D yields ~5 mm bias (statistically indistinguishable from zero).
 - Additional 3-cm Jason-2 SSH bias shift from new (preliminary GDR-D) SSB model
- Jason-2 Ku-ionosphere (GDR-T) delay smaller (9 mm) than Jason-1
 - Jason-1 agrees better with GPS (GIM)
 - New (GDR-D) ionosphere correction reduces bias.
- New approach to SSH bias computation lends insight on individual Ku, C contributions
 - Jason-2 C-band SSH bias slightly positive (~4 cm)
- TOPEX/Poseidon systems unbiased (< 2 cm)
 - T/P ALT-B: $+14 \pm 4 \text{ mm} (\text{N}=81, \sigma = 33 \text{ mm})$
 - T/P ALT-A: $+18 \pm 3 \text{ mm} (\text{N} = 154, \sigma = 32 \text{ mm})$
 - T/P POS: $+6 \pm 6 \text{ mm} (\text{N} = 22, \sigma = 30 \text{ mm})$
- SSH drift estimates for all systems statistically indistinguishable from zero
 - Modeling of vertical land motion still limiting systematic error source.
- Enhanced path delay (EPD) product yields promising results
 - Enables use of JMR/ AMR data at platform location (~10 km from shore)
 - Improves agreement with independent GPS-derived PD estimates

Using GPS to Monitor Vertical Land Motion at Harvest

Platform Harvest Geodetic Height From 19 Years of Continuous GPS Monitoring

IPL Harvest: Open-Ocean Conditions

Periodograms of SSH Bias Time Series

OSTM JASON2

				Mean	Err	sd	Bias	Err	Drift	Err	sd	Median	Bias	Drift	MAD
SSH: JASON-1 ABSOLUTE SERIES															
Jason-1 GDR-C	1-259	210	2002.0	89.4	2.0	28.3	96.3	3.9	-1.9	0.9	28.1	87.8	97.3	-2.2	21.9
Jason-1 GDR-C (GPS tropo)	1-259	206	2002.0	89.5	1.9	27.6	97.2	3.9	-2.1	0.9	27.3	88.2	94.8	-1.8	21.0
Jason-1 GDR-C (JMR/EPD)	1-259	208	2002.0	91.1	1.9	27.4	100.6	3.8	-2.7	0.9	26.9	89.9	104.2	-3.6	20.8
Jason-1 GDR-C (GIM)	1-259	210	2002.0	93.4	2.0	28.8	102.7	3.9	-2.6	1.0	28.4	91.6	104.7	-3.0	22.2
SSH: JASON-2 ABSOLUTE SERIES															
Jason-2 GDR-C	1-114	97	2008.5	176.0	2.6	25.6	175.5	5.1	0.4	2.9	25.7	173.4	170.4	2.5	19.9
Jason-2 GDR-C (GPS tropo)	1114	97	2008.5	177.2	2.5	24.3	175.7	4.9	1.0	2.8	24.4	176.9	171.6	2.9	19.0
Jason-2 GDR-C (AMR/EPD)	1-114	96	2008.5	181.0	2.6	25.8	182.2	5.1	-0.8	3.0	26.0	180.3	180.8	-0.5	20.2
Jason-2 GDR-C (GIM)	1-114	97	2008.5	187.5	2.6	25.3	186.2	5.1	0.9	2.9	25.5	186.7	181.3	3.4	19.6
Jason-2 GDR-C (001-107)	1-107	86	2008.5	175.8	2.8	26.0	174.6	5.6	0.8	3.5	26.2	173.4	170.6	2.4	20.4
Jason-2 GDR-C (CNES GDRD)	1-107	86	2008.5	179.1	2.8	25.7	178.1	5.5	0.7	3.4	25.9	178.6	174.2	3.3	19.8
Jason-2 GDR-C (JPL rlse11a)	1-107	86	2008.5	177.8	2.9	26.7	177.7	5.7	0.0	3.5	26.8	177.5	173.1	2.9	21.0
Jason-2 GDRC (001-008)	1 to 8	7		173.2	10.5	27.7						170.1			
Jason-2 GDRD (including test GDRD orbit)	1 to 8	7		4.6	7.5	19.8						5.0			
TOPEX/ POSEIDON ABSOLUTE SE	RIES														
TOPEX-B MGDR ⁺⁺ (TMR-rp + GSFC std0905)	237-365	81	2002.0	14.1	3.7	33.0	10.1	5.2	-3.5	3.3	33.0	13.1	10.3	-4.8	25.1
TOPEX-A MGDR ^{+ +}	1-235	154	1993.0	17.5	2.5	31.1	12.1	4.7	2.0	1.4	31.0	15.2	13.0	1.0	23.7
POSEIDON-1 MGDR ^{+ +}	1-365	22	2002.0	6.0	6.3	29.4	4.7	17.1	-0.2	2.7	30.1	5.9	-21.3	-4.3	20.4

Evolution of Bias/Drift Estimates

BIAS (mm)	Nice 2008	Seattle 2009	<i>Mar. Geod.</i> 2010	Lisbon 2010	San Diego 2011
Jason-2	+200	+174	+178	+176	+176
Jason-1	+99	+94	+94	+87	+89
ALT-B	+15	+14	+14	+10	+14
Poseidon-1	+5	-10	-10	-5	+6
ALT-A	+17	+1	+1	+7	+18
DRIFT (mm/yr)	Nice 2008	Seattle 2009	<i>Mar. Geod.</i> 2010	Lisbon 2010	San Diego 2011
Jason-2	n/a	-5	+15	+8	+2
Jason-1	+1	-2	-2	-2	-2
ALT-B	-2	-1	-1	-3	-4

• Impact of improved models for platform subsidence (from GPS measurements) is significant.

+3

+5

• Tide-gauge errors also contribute

-1

+0

Poseidon-1

ALT-A

+3

+5

+1

+4

-0

+2

Jason-2 – Jason-1 Geographically Correlated Errors From Tandem Calibration Phase (J2 Cycles 8–20) NASA

T/P Jason-1 Tandem Overflights of Harvest:

Jason 1/2 Tandem Overflights of Harvest: Comparison of Correction Terms

Jason-2 Radial Orbit Difference (POE vs GPS): $\sigma = 6$ mm; Mean = -1 mm (N = 79)

Jason-1 vs Jason-2 Global Statistics

