Near-Real-Time Wave, Wind, and Sea Surface Height from CryoSat FDM/L1B data

W. H. F. Smith1, J. L. Lillibridge1, R. Scharroo1,2, and E. W. Leuliette1

1NOAA Laboratory for Satellite Altimetry
2Altimetrics LLC

Acknowledgements to S. Labroue & J. Dorandeu

2011 Ocean Surface Topography Science Team Meeting • San Diego • 19–21 October 2011
NOAA wanted near-real-time winds and waves from CryoSat2 in time for 2011 hurricane season (June).

We decided to build our own product from L1b waveform data (FDM & LRM).

Our product turned out to give a good Sea Surface Height as well.

Walter’s Instrument Processing talk has details of the algorithm and its yields. Remko’s CalVal talk compares our results to other products.

This talk shows what we can produce for operational users on a “best effort” basis.
CryoSat-2 LRM Mode Products

- **LRM (Low Rate Mode)** = Operates as a conventional altimeter.

LRM Products:
- **FDM (Fast Delivery Mode)** = short latency, DORIS DIODE or predicted orbit, predicted meteo & ancillary data.
- “LRM” = Final version, precise orbit, analyzed meteo, etc. (final “GDR”).

Level L1b = Has waveform and geophysical corrections, but no derived quantities (range, SWH, σ^0) ⇒ no sea surface height, wind speed (U_{10}), wave height, backscatter, etc.

Level 2 = No waveform; has geophysical corrections and derived quantities.

*We build all our results from **L1b FDM and LRM waveform products, not Level 2.***
Fast Wind & Wave Recipe

① Download new FDM L1b data from ESA ftp server.
② Retrack the waveforms at 20-Hz.
③ Average the 20-Hz results to 1-Hz.
④ Remove land values and reformat SWH and U_{10} for NOAA’s forecasters (N-AWIPS).
⑤ Export to NOAA forecasters via NOAA ftp sites.

SWH requires only a waveform and lat,lon.
σ_0, to within ± 1dB, requires only AGC and lat,lon. Retracking and (crude) orbit height improve σ^0.

Nothing else needed for SWH and σ^0, U_{10}.
Every hour, we search ESA ESRIN ftp site for new FDM L1B data. From ESRIN ftp to NOAA N-AWIPS, our process takes about 2 minutes, end-to-end. Thus latency is determined on the ESA side.

Until recently, less than 25% of FDM L1B files were available within 3 hours of real time. This has now improved.

October 6-13: 34% within 3 hours; 77% within 6 hours; all within 1 day.
CS2 Wave Heights

swh (fdm1r) – subcycle 014 – 2011/04/19 – 2011/05/18
J-1 & J-2 Wave Heights

swh (j1j2) – cycles 344/105 – 2011/05/04 – 2011/05/19
Envisat Wave Heights

swh (n1) – cycle 102 – 2011/04/25 – 2011/05/25

[Map of world with wave height data]
CS2 SWH on NCEP N-AWIPS

NOAA Advanced Weather Interactive Processing System (N-AWIPS) display at NCEP
SWH is Easy; U_{10} is a bit harder.

Retracking yields SWH straightforwardly.

Wind speed is estimated from backscatter, σ^0, by empirical models tuned separately for each altimeter. *We don’t yet have a model for CS2.*

σ^0 can be obtained by retracking, but there is an unknown (to us, at least) constant, representing $10*\log_{10}$ of the system gains and losses.

We had to guess this unknown constant.

Our wind speed estimates are therefore *ad hoc* and preliminary.
sig0 (j1+j2) – cycles 344/105 – 2011/05/04 – 2011/05/19
CS2 Wind Speeds (Abdalla model)

wind (fdm1r) – subcycle 014 – 2011/04/19 – 2011/05/18
Envisat Wind Speeds (Abdalla model)
J-1 & -2 Wind Speeds (Collard model)

wind (j1j2) – cycles 344/105 – 2011/05/04 – 2011/05/19

[Diagram showing wind speed maps and histograms]
After real time Sea Height

The LRM L1b (“GDR”) has same format as the L1b FDM, so we use our 20 Hz retracker on that product as well, with averaging of (orbit height minus range) to 1 Hz.

We ingest this product into the Radar Altimeter Database System (RADS) to verify correction fields.

We form height anomalies by subtracting a Mean Sea Surface model.

Currently, this product is available days to weeks after real time, because of the need for an orbit.
J-1 & J-2 Sea Level Anomaly

sla (j1j2) – cycles 344/105 – 2011/05/04 – 2011/05/19

[Map and graph showing sea level anomalies with respective histograms on the right side]
CS2 SSB is typically -3.5% SWH

Backscatter Coefficient (dB)

CryoSat

Hybrid SSB Model (cm)

Direct Method; BM-4 style; relative to DTU10 Mean Sea Surface; fit to subcycles 11-17
SSH crossovers < 3 days

<table>
<thead>
<tr>
<th></th>
<th>Mean (mm)</th>
<th>Std. Dev. (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Env – Jason-2</td>
<td>-2.8</td>
<td>48.9</td>
</tr>
<tr>
<td>CS2 – Jason-2</td>
<td>+0.2</td>
<td>50.8</td>
</tr>
<tr>
<td>CS2 – Env</td>
<td>-2.4</td>
<td>49.7</td>
</tr>
</tbody>
</table>

CryoSat2 seems as good as J-2 and Envisat
We would like accurate sea surface height anomalies within ~1 day of real time for Ocean Heat Content, Surface Currents, and other applications. We have *almost* everything we need to build that from our FDM L1b retracker and RADS:

- **Orbit**
 - Iono: GPS GIM
 - Meteo: NOAA NCEP
 - IB: MOG2D
 - Tides: FES, GOT
 - SSB: RADS empirical

We could distribute this through RADS if that is desired.
Conclusions, 1

CryoSat2 is an excellent altimeter for oceanography. We thank ESA for the FDM L1b Product. We are producing SWH, σ_0, U_{10}, and SSH by retracking FDM L1b waveforms. Our product compares well with J1, J2, E, though there are *ad hoc* values that could be tuned.
Our product is on the NOAA-only side of RADS, but could be put on the public side if desired.

Currently, our winds and waves are adequate for NRT, but height needs a better orbit. If we had an MOE orbit within 1-3 days of real time, we could make an I-GDR for Cryosat2 LRM. Such a product would build from the FDM L1b and so would not impact the ESA ground segment.

We could offer this as an “interim”, “best effort” product, until ESA’s new products are ready (February 2012?).