

Sentinel-3

Jérôme Benveniste esa

OSTST 19-21 October 2011

S3 Background: Primary Objectives

Sea Surface Height products (Credit: CLS)

Gmes

Sea Surface Temperature products (Credit: Met Office)

Land cover products (Credit: ESA)

Atmospheric aerosol products (Credit: GlobAerosol)

S3 Background: Objectives

Primary

Secondary

 Sentinel-3 shall provide continuity of an ENVISAT type ocean measurement capability for GMES Services, including:

Continuity of ocean colour as good as ENVISAT MERIS or better

Continuity of SST as good as ENVISAT AATSR or better ^{rel of}

Continuity of SSH as good as ENVISAT RA-2 or better with SAR capability derived from CryoSat-2 over coastal zones and sea ice coastal zones and over sea ice.

- Continuity of land products (reflectance's, temperature) as good as ENVISAT MERIS and AATSR or better
- Provide consistent quality L1b and L2 optical and topography products in a timely manner for GMES services
- Continuity of SPOT VGT-P like products
 Ition SPOT Vegetation P-
- Fire, "River and Lake" height, atmospheric products...for GMES services

S3: Mission Heritage...

1998: SPOT-4

S3 Configuration: Satellite description

Main satellite characteristics

- 1250 kg maximal mass
- Volume in 3.89 m x 2.202 m x 2.207 m
- Average power consumption of 1100 W
- 7.5 years lifetime (fuel for 5 add. years)
- Large cold face for optical instruments
 thermal control
- Modular accommodation for a simplified management of industrial interfaces
- Launch S3A first 1/4 2014
- Launch S3B 18 months later

Observation Data Management

- 21.25 Gb (170 Gbit) of observation data per orbit
- Space to ground data rate 2 x 280 Mbps X-Band
- 1 ground contact per orbit
- 3h delivery timeliness (from satellite sensing)

S3: Key requirements for orbit selection

- Sun-synchronous frozen orbit close to 800 km
 - Required for continuity of heritage optical measurements
- Topography mission requirements:
 - Repeat cycle > 20 days,
 - Optimum Topography mission spatial sampling (dense)

Ocean Colour mission requirements

- Short 2-day global coverage with 2 satellites, 4 days with one Implies a sub-cycle of 4 days
- Local time of observation shall be > 10 h to avoid morning haze

Sea Surface Temperature mission requirements

Local time at node shall be < 11 h to avoid diurnal thermocline
 4 day coverage even with one satellite

Orbit type	Repeating frozen SSO
Repeat cycle	27 days (14 + 7/27 orbits/day)
LTDN	10:00
Average altitude	815 km
Inclination	98.65 deg

S3: Instrument payload swath / footprints

SLSTR nadir: 1420km

Offset westward from nadir

SLSTR oblique: 750 km

Centred at nadir

OLCI: 1270 km

Westward inclination to avoid sunglint Fully within SLSTR nadir and oblique swath

SRAL: > 2km

Centred at nadir and fully within SLSTR and OLCI swath

MWR: 20 km

Centred at nadir and fully colocated with SRAL

Revisit time and coverage

Optical missions: Key elements of the Sentinel-3 mission are: Short Revisit times for optical payload, even with 1 single **Topography Mission:** satellite ground track repeatability, dense **Revisit** at **Revisit for** spatial sampling Equator latitude > Spec. **30° Ocean Colour** 1 Satellite < 3.8 days < 2.8 days (Sun-glint $< 2 \, days$ free, 2 Satellites < 1.9 days < 1.4 days day only) Land Colour 1 Satellite < 2.2 days < 1.8 days (day only) < 2 days 2 Satellites < 0.9 day < 1.1 day SLSTR dual 1 Satellite < 1.9 days < 1.5 days (day view Ground tracks after 1 $< 4 \, days$ and night) complete cycle (27 2 Satellites < 0.9 day < 0.8 day days) S3A & S3B

- Near-Real Time (< 3 hr) availability of the L2 products
- Slow Time Critical (STC) (1 to 2 days) delivery of higher quality products for assimilation in models (e.g. SSH, SST)

Revisit time and coverage

Topography Mission: ground track repeatability, dense spatial sampling

Ground tracks after 1 complete cycle (27 days) S3A & S3B

S3: ENVISAT Heritage Accuracy

S3 Topography Mission

S3: Topography Mission

Topography package:

1. Synthetic Aperture Radar Altimeter (SRAL)

2. Microwave
 Radiometer (MWR)
 3. Precise Orbit
 Determination (POD)

Key Improvements:

SAR & LRM mode Better POD Better tracking Polar Oceans

S3 Topography mission Mode mask

Open Ocean, Ice Sheet Interiors

Observed surfaces

LRM Mode:

- Open ocean, coastal ocean
- Ice sheets (interiors and margins)
- Sea ice
- In-land water (rivers & lakes)

S3 SRAL: Technical

Dual frequency Ku/C band Radar Altimeter

CryoSat and Jason heritage

 High horizontal resolution (~300m in SAR mode)

SRAL Radar features:

- Ku-Band (13.575 GHz) : main frequency
- C-Band (5.41 GHz) : ionosphere corrections
- Fully redundant electronics

Measurement modes:

• 2 radar modes: Low Resolution Mode (LRM) and Nadir SAR mode

- 2 tracking modes: Closed-loop and open-loop tracking modes over rough terrain
- Any radar mode can be combined to any tracking mode

Objective: To retrieve orbit altitude information with an End-to-end range accuracy of 3 cm (ocean).

Supported by MWR, GPS, LRR and DORIS

S3: SRAL SAR Mode (with help from CryoSat in Equatorial Indian Ocean)

SAR Ocean 8th June 2010

SRAL calibration and characterisation

- Key parameters to characterize the SRAL altimeter instrument performances are:
 - Range Impulse response:
 - Low Pass Filter:
 - Range noise
- Some other parameters will require in-flight validation, this will be done during commissioning:
 - Antenna pointing accuracy, antenna pattern
 - Range Absolute bias

At SWH = 2m, the altimeter range noise is estimated to 0.7 cm rms. Better than LRM mode since the number of averaged pulses is greater in SAR mode (256 instead of 84 within a tracking cycle)

C-band Range Impulse Response

S3 MWR: Overview

Dual Frequency Noise Injection Radiometer, with cold sky calibration

• ENVISAT and Jason heritage

Technical:

- 2 channels: 23.8 and 36.5 GHz
- Bandwidth: 200 MHz
- Integration time: 150 ms
- Footprint: 20km
- Co-located with SRAL
- Blanking of SRAL pulses

Radiometric Performance (typ.):

- Sensitivity: <0.4 K
- Stability: <0.6 K
- Abs. accuracy: <3 K
- Br. Temp. range: 150 K-313 K

Objective: Provide the altimeter wet troposphere correction with typical accuracy of ~1.4 cm

S3: Precise Orbit Determination (POD)

8 channel GPS receiver (~3m NRT, 2-3cm on ground)

- Satellite Navigation AOCS (on-board permanent function)
- Datation of scientific telemetry (on-board permanent function)
- Control of SRAL open-loop tracking (on-board commanded function)
- POD (on ground)
- USO frequency monitoring (on-ground)

DORIS Navigation receiver (~1 cm)

- Provide USO frequency to SRAL (on-board permanent function)
- Control of SRAL open-loop tracking (on-board commanded function)
- POD (on ground)
- USO frequency monitoring (on-ground)

Laser Retro-Reflector (<2 cm)

Contribution to POD, validation of POD solution

POD radial accuracy requirements (rms)

- Near Real Time (NRT < 3h): 10 cm (8 cm goal)
- Short Time Critical (STC < 48h): 4 cm (3 cm goal)
- Non Time Critical (STC < 1 month): 3 cm (2 cm goal)

Sentinel-3 Core PDGS L2 LAND / MARINE Production

L2 Optical production organisation

Example of geophysical product: OLCI Terrestrial Chlorophyll Index (OTCI) Chlorophyll Concentration for open ocean waters (CHL_OC4ME)

Land products

The Land and Water masks are perfectly complementary.

*The cloud mask is provided in white for a better interpretation of the information.

L2 SRAL production organisation

*The Land and Water masks are in overlap to ensure analysis of transition and meaningful continuity of segments

Sentinel – 3 Core GS User Products list

NB: Validated Level 2 products are swiftly available through commissioning and GIO Phase

Sentinel -3 Core products Surface Topography Mission

Geophysical Product	Observed	Spatial	Continuity	Measurement Source		
	Surfaces	Resolution				
Altimeter Range	Ocean	SAR: ~300 m	Cryosat	SRAL + MWR + POD		
Significant Waveheight						
Backscatter		LRM: > 5km	ERS, Envisat			
Sea Surface Height Anomaly						
Altimeter Wind Speed						
Freeboard (sea-ice)						
Brightness Temperatures						
Wet Tropospheric correction						
Ionospheric correction						
Rain rate						
In-land water	Non-Ocean			SRAL + POD		
Ice-sheet margin		SAR: ~300m	Cryosat			
Land surface height						

S-3 STM L2 Geophysical content

Sentinels Core Products Products Format

A unique packaging concept adapted to different missions user communities

S3 PDGS Data volume (uncompressed)

	Level 0 GB/Orbit	Level 1 GB/Orbit	Level 2 Marine GB/Orbit	Level 2 Land GB/Orbit
OLCI	9.5	29.6	35.5	7.8
SLSTR	4.8	45.6	5.8	2.8
SYN (OLCI+SLTSR)		55.8		31.2
SRAL + MWR	5.8	0.12	0.09	0.07

Total

	Level 0			Level 1			Level 2 Marine			Level 2 Land		
	GB/Orbit	GB/Day	TB/Year	GB/Orbit	GB/Day	TB/Year	GB/Orbit	GB/Day	TB/Year	GB/Orbit	GB/Day	TB/Year
OLCI	9.47	134.98	48.11	29.60	422.07	150.45	35.50	506.20	180.43	7.82	111.51	39.75
SLSTR	4.80	68.40	24.38	45.60	650.22	231.77	5.80	82.65	29.46	2.81	40.11	14.30
SYN (OLCI+SLSTR)	0	0	0	55.80	795.67	283.61	0	(0	31.21	452.70	161.64
SRAL	5.82	82.98	29.58	0.12	1.65	0.59	0.09	1.31	0.47	0.07	1.00	0.36
MWR	0.003	0.039	0.014	0.003	0.039	0.014	0	(0	0	0	0
GNSS/DORIS	0.03	0.39	0.14	0	0	0	0	(0	0	0	0
NavAtt	0.001	0.010	0.004	0	0	0	0	(0	0	0	0
нктм	0.044	0.631	0.225	0	0	0	0	C	0	0	0	0
TOTAL	20.16	287.43	102.45	131.12	1,869.65	666.43	41.39	590.16	210.36	41.91	605.32	216.04
	GB/Orbit	GB/Day	TB/Year	GB/Orbit	GB/Day	TB/Year	GB/Orbit	GB/Day	TB/Year	GB/Orbit	GB/Day	TB/Year

S3: Altimetry Product Validation

The Validation is the assessment of the altimetry measurements data quality via:

- Data coverage analysis
- Detection and investigation of spurious data
- Measurement of the altimetry system perfor-
- Consistency/continuity check with oth

Three main categories of diagr

- <u>Global internal analyse</u>
 - → Ensure consistr
 - → Diagnos^{t;}

• <u>Cr</u>

 \rightarrow

 \rightarrow As.

ack and crossovers

VBUL

Jal corrections

Altimetry missions

- , between different altimetry missions
- ...y of the altimetry system

• Global an in-situ /model data comparison

 \rightarrow Use independent data for system stability and consistency estimation

e.g. Tide Gauges, Temperature/Salinity profilers, Meteo Models, Radiosondes, etc 1st S3 MAG ESTEC, 27/28 January 2011

Sentinel-3: Summary

- European global land and ocean monitoring mission
 - Optical mission to cover see and land colour and surface temperature
 - Altimetry mission in support of sea-surface and land-ice topography
 - Vegetation products through synergy between optical instruments
- Optical payload 2 days global coverage with 2 Satellites in view of the increased swath
- Near-Real Time (< 3 hr) availability of the L2 products
- Increased number of bands compared to both AATSR and MERIS allowing
 - Overlap and synergy between OLCI and SLSTR
 - Enhanced fire monitoring capabilities

Sentinel-3: Summary

- Improved altimetry mission with
 - Along-track SAR for coastal zones, in-land water and sea-ice topography
 - Open-loop tracking for rough zones
- Very accurate POD providing
 - A radial POD accuracy of 2-3 cm in ground processing.
 - On-board navigation solution (3m) for real time range control of SRAL (Open Loop)
- Highly autonomous on-board operations
 - allowing for systematic measurement and data download with minimum ground intervention
- Both L1b and L2 core products from Optical and topography mission at high-resolution
- Calibration and Validation planning now in progress
- Launch planned for last ¼ 2013

More information at http://www.esa.int/gmes

Sentinel-3 Altimetry

NOW is the time to get prepared!

S3 Satellite General Status: Contractual

- Sentinel-3 Satellite industrial consortium completed
- 2nd Amendment to ESA/EC cooperation agreement to release EC funding to cover the GIO (GMES Initial Operations) until 2014 approved and signed by ESA/EC mid June 2011. It includes, among the others
 - a. Securing the Sentinel-B launch services (only requested min. down-payment)
 - b. Early operations of "A" Sentinels until June 2014
- Launch Services selection process unblocked
 - a. IPC on 29 June approved contract proposal for placement of S3A (and S2A) Launch Service Contract with Eurockot
 - b. Sentinel-3B (and 2B) Launch Services selection also completed
 - Phased approach to account for the only "partial" budget available
 - TEB recommendation for the selection of two VEGA's
 - Further recommendation to use these two VEGA's as backup for the A launchers
 - c. Negotiation of contracts for both the A and B Launch Services to be finalised by the end of 2011
 - Consequences on Sentinel-3: two scenario's to be maintained, consisting in one launch with Rockot and one with Vega

Sentinel-3 General Status

- Satellite CDR review process completed with Board which took place at ESTEC on 27th of April
 - a. The Board concluded that, <u>except for the SLSTR instrument</u>, the Sentinel-3 design maturity is commensurate with a status as expected at a CDR.
 - b. A Sentinel-3 CDR Close-out, in form of written report, expected by November 2011
- Synthesis of Main CDR's Status:

Sentinel-3 CDR's Status (1/4)

• SRAL CDR completed successfully

- a. SRAL Design considered fully mature
- b. Only 3 Board recommendations issued, only related to documentation (VCD's completion and approval) and securisation of manufacturing processes qualification (schedule affected)
- c. No technical risks identified, PFM manufacturing on-going, flight Antenna's already delivered

• Platform CDR completed successfully

- a. Only 4 technical recommendations out of the 14 total (mainly documentation)
- b. No show stopper, critical recommendations closed by S/L CDR collocation
- MWR CDR (in two parts) completed successfully
 - a. 10 recommendations in total most of which already closed
 - b. Succesfull CDR close-out occurred in 2nd half of July, based on REU CDR outcome

Sentinel-3 CDR's Status (2/4)

- OLCI CDR also successfully completed (final delta Board held on 30th of June)
 - a. 7 recommendations issued, mostly closed
 - b. OEU CDR close-out by TAS-E still not achieved
 - Impacts assessment for increased power consumption and further consolidation of values blocking OEU CDR closure, now planned in October

SLSTR CDR only partially achieved

- a. Numerous open lower level CDR's in particular in the OME areas (late design consolidation)
- b. Major Delays in the availability of the instrument STM and EM models
 - STM campaign (thermal + mechanical) on-going, TRB expected end of October '11
 - EM testing TRB expected later this year
- c. Delta CDR completed on the 12th of July
 - Still design uncertainties in the field of Structure, Cryocooler and VISCAL
- d. CDR Close-out by end October '11 expected to confirm CDR conclusions based on STM test results and further design consolidation

- The SLSTR and the Platform are the most critical items on the satellite development schedule
 - a. Platform schedule mainly driven from Structure availability, with PCDU, PDHU and SMU immediately sub-critical
 - b. SLSTR schedule driven by several elements: OME (Flip mirror and Structure in particular), Cryocooler, Detectors
- Implementation of several mitigation actions allowed announcing a launch date of 30 October 2013
- As mitigation for further schedule delays, S3B activities at equipment/instrument level need to proceed rapidly
 - a. This will allow taking full benefit of eventual exchange of S3A and S3B elements
 - Both in case of failure of one unit
 - Or in case of late availability, where a "partially" tested A unit integrated at S/L level may be replaced at a later stage by a fully tested B unit,
- Recently, in the updated GMES LTS, a tentative Launch Date for S3B of end October 2014 has been indicated, which would be compatible with the current planning

S3A & S3B schedule

European Space Agency 05.07/2011

S3 GS Progress Meeting #6

32

Sentinel-3: Future months main activities

- Satellite/Instrument CDR's completion
 - a. Full completion of the CDR process by Nov. 2011 is fundamental to
 - Maintain credibility on the maturity status of the programme
 - Confirm credibility of current Launch Date
- Start of PFM MAIT activities
 - a. Instrument/Platform AIT and Satellite V-EM activities starting now at beginning of September 2011
- Launcher Contracts placement and K.O.
- Phase E1 (Launch preparation and Commissioning Phase) consolidation
 - a. Through the review of the requested Launch Campaign activities
 - b.and the consolidation of the requested CalVal activities and of the Commissioning Plan

Thank you - any questions?

For more information http://www.esa.int

See Donlon et al (2011) The GMES Sentinel-3 Mission, Remote Sensing of Environment, In press

and the Mission Requirements Traceability Document (MRTD) at http://download.esa.int/docs/EarthObservation/GMES_Sentinel-3_MRTD_Iss-1_Rev-0-issued-signed.pdf

Contact: craig.donlon@esa.int

