

Jason-CS

Richard Francis CryoSat / Jason-CS Project Manager ESA-ESTEC

Context

- Jason-CS is second component of the "hybrid" solution, after Jason-3
- Spacecraft to be derived from CryoSat
- Payload to be based on heritage of European missions, *or*, with US-provided instruments with heritage from Jason-3
- Launch in 2017

Status

- Phase B1 study underway, extended to end 2012
- Approval for implementation of ESA programme planned for end-2012
- Approval for partner agencies expected during 2013 and 2014

Payload Composition (1)

Poseidon-4 Radar Altimeter

- Heritage from CryoSat and Sentinel-3 (including SAR mode)
- Technology improvements (digital hardware)
- Microwave Radiometer (2 options)
 - Improved AMR from Jason-2/3: "Climate Quality"
 - European radiometer derived from Sentinel-3 (3-frequency under investigation)
- Laser Reflector (2 options)
 - LRA from Jason-2/3
 - Russian LRR, heritage from CryoSat

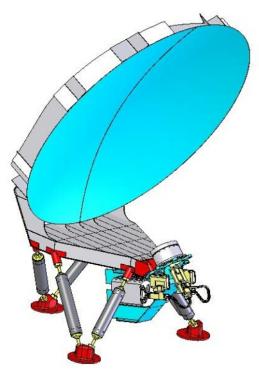
Payload Composition (2)

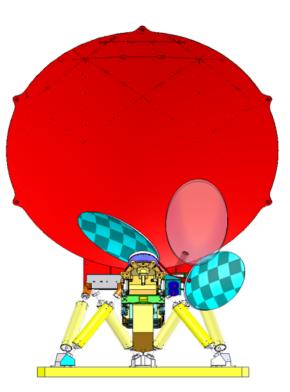
GNSS Receiver (2 options)

- ► JPL TriG
- Sentinel-3b GNSS Receiver, extended to 12 channels
- Radio-Occultation option under investigation
- DORIS Receiver
 - DGXXS model (improved DGXX, following CryoSat-2 experience), heritage Jason-3
- Possible passenger: micro-accelerometer
 - To support neutral air density measurement for space weather applications

- LRM classical pulse-width limited mode
- SAR mode closed-burst operation, similar to CryoSat-2 and Sentinel-3
 - Height noise reduction by a factor 2 compared to LRM
- Interleaved mode under investigation open burst operation providing LRM and SAR operation *simultaneously*
- On-board data processing required for global interleaved mode

Poseidon-4 Technology


- Direct chirp up and down conversion
- Matched filtering instead of de-ramp
- Consequences:
 - Greater waveform fidelity
 - Reduced need for in-flight calibration
 - Greater reproducibility of manufacture (between redundancies and between missions)


Radiometer (AMR-C)

- Jason-CS Studies underway at NASA-JPL
- Enhanced version of Jason-3 Advanced Microwave Radiometer
- Objective of providing Climate Quality calibration stability using:
 - High stability in-flight calibration targets
 - Improved thermal stability
 - Improved ground processing system

Jason-2/3 AMR

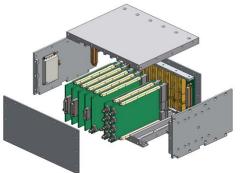
Notional concept of AMR with in-flight calibrator

Radiometer (European)

- Derived from Sentinel-3 (heritage ERS-1, ERS-2, Envisat)
- Thermal design optimised to minimise variation over lifetime
- Addition of 3rd frequency (18 GHz) under investigation

TriG Receiver (1)

- TriG A GNSS Precise Orbit and Radio Occultation Space Receiver
- Orbit Determination:
 - 1 10 cm (3D) post processed POD
 - ▶ 1 3 m real-time on board navigation
- Signals In View:
 - GPS L1(C/A), L2(C), L5, Galileo E1, E5a, GLONASS (CDMA)


First Galileo Launch

TriG Receiver (2)

- Redesigned Radio Occultations (RO) Processing:
 - to extract highly dynamic, low amplitude signals as they cut though the atmosphere
- Increased Reliability
- Highly Configurable

- Software and Firmware Upgradable In flight
- Initial development funded by NASA

European GNSS Receiver

- GPS and Galileo constellations
- Signal types optimised for ca. 2020
- 12 channels (at least)
- Radio Occultation capability under investigation

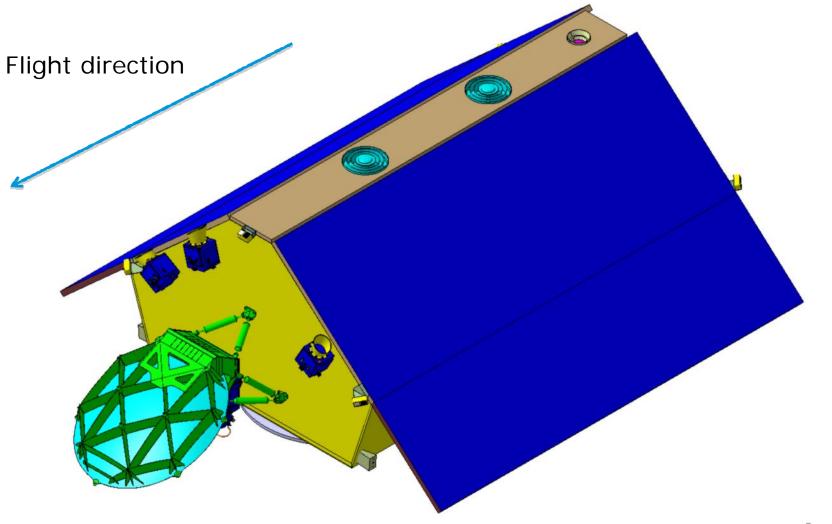
Satellite Design Constraints

Orbit:

- classical Topex/Poseidon orbit
- Lifetime
 - Increased from 3 years to 5 years (+2 years consumables)
- Operations concept
 - Near-real time mission
 - High data availability
- Compatibility with US & Vega launch vehicles

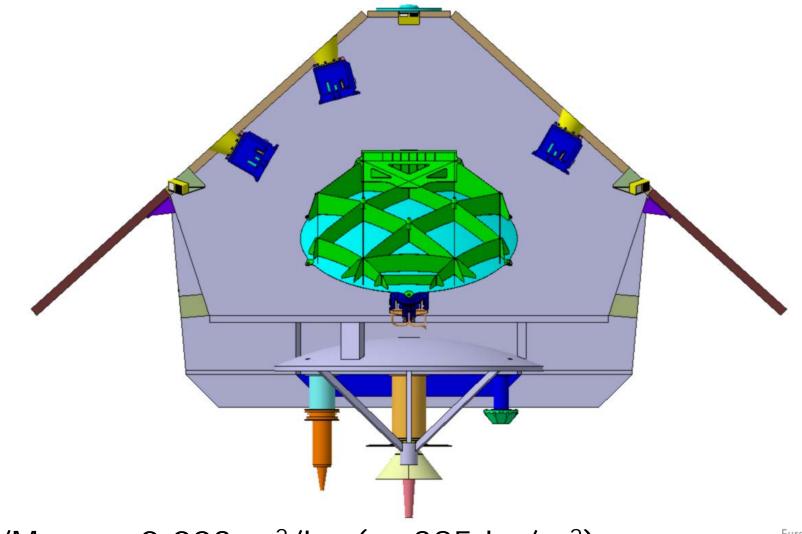
Orbit

Attitude Control

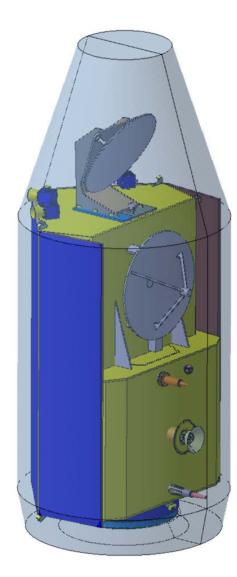

Some changes in sensors and actuators needed

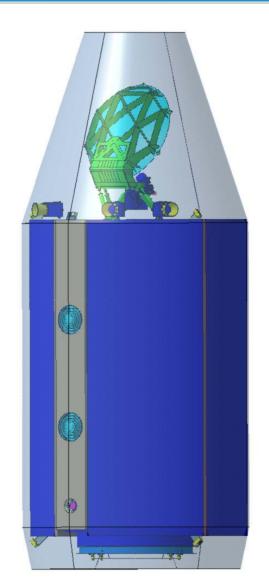
Radiation

- Higher radiation environment impacts star tracker selection
- Some local shielding needed
- Space debris code of conduct
 - De-orbiting within 25 years required



Spacecraft Design


Constant Cross-section

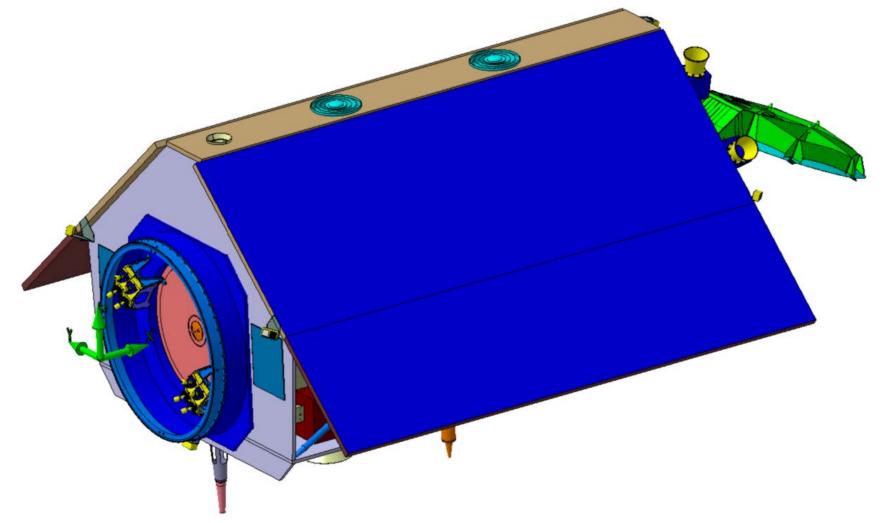


 $Area/Mass = 0.003 m^2/kg (or 385 kg/m^2)$

Vega Compatibility

Orbit

Attitude Control


Some changes in sensors and actuators needed

Radiation

- Higher radiation environment impacts star tracker selection
- Some local shielding needed
- Space debris code of conduct
 - De-orbiting within 25 years required

Propulsion

Launcher

Provision by US

Medium-class vehicle, such as:

- Taurus II
- Falcon-9
- Compatibility with Vega maintained

Ground Segment

- Operations (command and control, science data processing) at EUMETSAT
- Science data processing also at NOAA
- Data downlink to European and US stations
 - Full data set dumped to each station, providing autonomy and redundancy
 - Near real time service provided by European and US stations in complementary mode