Influence of latest orbit reprocessing on multi-mission altimetry

Denise Dettmering & Wolfgang Bosch

Deutsches Geodätisches Forschungsinstitut (DGFI) Centrum für Geodätische Erdsystemforschung (CGE) Munich, Germany email: *dettmering@dgfi.badw.de*

Influence of latest orbit reprocessing on multi-mission altimetry

- Multi-Mission Crossover Analysis
- Orbit solutions
 - ESOC EIGEN-6C solutions (Jason-1/2, Envisat)
 - REAPER Orbits (ERS-1/2)
 - GFO GSFC std0905
- Investigations
 - Geographically correlated errors
 - Center-of-Origin (first degree harmonics)
 - Orientation of the rotation axis (second degree harmonics)

Conclusion

Multi-Mission Cross-Calibration (MMXO)

Basics

- single- and dual satellite crossover differences in all combinations
- using only crossovers close in time ($\Delta t < 2 \text{ days}$)
- least squares adjustment of radial errors minimizing crossover and the along-track consecutive differences
- Weighting of missions done by variance component estimation (VCE)
- TOPEX (later Jason1) taken as reference mission
- Segmentation into 10-day cycles of reference mission plus 2 days overlap (errors in the overlap differ by mm only)
- up to 120000(240000) crossovers (unknowns) per segment
- iterative solution with conjugate gradient algorithm

Results

- time series of radial errors per mission (w.r.t. to reference mission)
- range bias (per 10 days period) => Cal/Val Session
- geographically correlated error pattern
- differences in the realization of the origin of reference frame (first order harmonics)
- differences in the realization of the rotation axis (second order harmonics)

mainly due to orbit errors

Used orbit solutions

ESOC sol3 & sol8 orbits (Jason-1/2 & Envisat)

- EIGEN-6C (including GOCE)
- ITRF2008

Michiel Otten; ftp://dgn6.esoc.esa.int

ERS-1/2 REAPER Orbits

- ESA project "Reprocessing of Altimeter Products for ERS" (REAPER)
- Combined solution from three processing centers (DEOS,ESOC,GFZ)
- EIGEN-GL04S
- LPOD2005

S. Rudenko, M. Otten, P. Visser, R. Scharroo, T. Schoene New improved homogeneous orbits of ERS-1 and ERS-2 satellites, Advances in Space Research, submitted

GFO GSFC std09/05 Orbits

- EIGEN-GL04S (120)
- ITRF2005

Lemoine F.G., Zelensky N.P., Chinn D.S., Beckley B.D., Lillibridge J.L. Towards the GEOSAT Follow-On Precise Orbit Determination Goals of High Accuracy and Near-Real-Time Processing, Proceedings of AIAA/AAS Astrodynamics Specialist Conference 2006

ESOC EIGEN-6C orbits

Influence of latest orbit reprocessing on multi-mission altimetry

ESOC EIGEN-6C orbits – GCE

Influence of latest orbit reprocessing on multi-mission altimetry

ESOC EIGEN-6C orbits – Center of origin

DGFI

Influence of latest orbit reprocessing on multi-mission altimetry

Jason-2 – Low degree harmonics (ESOC sol3 orbit)

=> significant range bias w.r.t. Jason-1=> all other coefficients not significant

Influence of latest orbit reprocessing on multi-mission altimetry

ERS REAPER orbits

Influence of latest orbit reprocessing on multi-mission altimetry

ERS – geographically correlated errors

Influence of latest orbit reprocessing on multi-mission altimetry

Differences in Center-of-Origin realization: ERS1-TOPEX

Influence of latest orbit reprocessing on multi-mission altimetry

Differences in Center-of-Origin realization: ERS2-TOPEX

Influence of latest orbit reprocessing on multi-mission altimetry

ERS – center of origin

	ERS-1	ERS-2
dx	2.3 ± 2.9	4.0 ± 6.6
dy	-0.1 ± 2.5	-0.8 ± 5.3
dz	-2.3 ± 5.5	-3.6 ± 5.3

differences to TOPEX in [mm]

- \Rightarrow No significant differences in the center-of-origin realization between ERS REAPER orbits and TOPEX
- \Rightarrow ERS-2 higher variations due to increased solar activity (~2000 to 2003)
- \Rightarrow no significant differences in the second order terms (rotation axis)

GFO GSFC std0905

Influence of latest orbit reprocessing on multi-mission altimetry

GFO – geographically correlated errors

- \Rightarrow significant improvement
- \Rightarrow still some systematic effects left => J2 ?

GFO – center of origin

Influence of latest orbit reprocessing on multi-mission altimetry

GFO – Low degree harmonics (w.r.t TOPEX mission)

gdr-b	std0905	
21.6 ± 5.3	23.9 ± 4.5	range bias
5.7 ± 7.5	5.2 ± 6.2	
4.3 ± 3.9	-0.9 ± 2.4	center-of-origin
-6.5 ± 4.4	0.8 ± 2.9	
-8.6 ± 2.6	-6.4 ± 2.1	flattening ►
-0.8 ± 1.4	0.2 ± 1.1	
1.4 ± 2.1	0.7 ± 1.4	orientation of the rotation axis
	gdr-b 21.6 ± 5.3 5.7 ± 7.5 4.3 ± 3.9 -6.5 ± 4.4 -8.6 ± 2.6 -0.8 ± 1.4 1.4 ± 2.1	gdr-bstd0905 21.6 ± 5.3 23.9 ± 4.5 5.7 ± 7.5 5.2 ± 6.2 4.3 ± 3.9 -0.9 ± 2.4 -6.5 ± 4.4 0.8 ± 2.9 -8.6 ± 2.6 -6.4 ± 2.1 -0.8 ± 1.4 0.2 ± 1.1 1.4 ± 2.1 0.7 ± 1.4

- \Rightarrow center-of-origin differences reduced by std0905 orbit
- \Rightarrow significant difference in c₂₀ (oblateness of the Earth) w.r.t. TOPEX remains

GFO – flattening c20

geographically correlated errors

Influence of latest orbit reprocessing on multi-mission altimetry

✓ ESOC EIGEN-6C orbits: improved GCE and better consistency between **Jason** and **Envisat** (temporal gravity field, visible as Δy)

✓ Geographically correlated errors of ERS now in the same order of magnitude as TOPEX and Jason (2-3 mm RMS), thanks to REAPER!

✓ GFO orbits show significant improvement; some problems left:
 J2 systematic? Time tag bias?

THANK YOU !

Radial Errors are available for ascending and descending tracks.

From the differences between ascending and descending errors (mean values per 2.5° by 2.5° region) the mean GCE can be computed:

 $\Delta \gamma = (dr^{asc} + dr^{desc})/2 \qquad [Rosborough, 1986]$

 dr^{asc} average of the radial errors (mean reduced) of all asc. passes dr^{desc} average of the radial errors (mean reduced) of all desc. passes $\Delta\gamma$ mean of ascending and descending errors, GCE per cell

Separation of radial errors into range bias and center-of-origin shifts Least square adjustment for each 10-day cycle

$$x_i + \varepsilon_{x_i} = \Delta r + \Delta x \cos \varphi_i \cos \lambda_i + \Delta y \cos \varphi_i \sin \lambda_i + \Delta z \sin \varphi_i$$

input:radial errors x_i at location φ_i , λ_i output:mean range bias Δr mean center-of-origin shifts Δx , Δy , Δz

Computation of low degree harmonics

 s_{22} c_{22} : for most missions estimation not possible

Influence of latest orbit reprocessing on multi-mission altimetry