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Introduction

Altimeter waveforms are conventionally tracked/retracked using 
maximum likelihood (MLE) or least squares to fit a ‘Brown’ model 
to the received waveform. Each waveform is treated completely 
separately and we can track them in any order. Even in open 
ocean we are throwing information away as we know that the sea 
surface height, wave and wind fields are ‘smooth’ and there is 
information about the next altimeter waveform in the previous 
one. In the coastal zone we may want to include information 
from previous waveforms, e.g. the presence of ‘specular’ echos 
or from external sources, e.g. wavebuoys or models. Or we may 
want to add less quantitative information such as wanting our 
estimates to be smooth.

Bayesian Retracking

Before we track an altimeter waveform we have information  
on what we expect the new waveform to look like. We do not 
expect any of the waveform parameters to move very far from 
the values gained from the previous waveform. We might also 
have some external information; for example we might have 
information on the wave height and σ0 value from numerical 
weather prediction model forecasts or analyses. How can we 
incorporate such information in our estimates in a rigorous way 
that still allows to calculate error estimates etc as we can with 
MLE?

One approach is to use Bayesian statistical methods. If π(w(θ)) 
is the likelihood of our observed waveform for a given set of 
parameter values, and our prior (pre-existing) information on 
those parameters expressed as a probability density function is 
π(θ). Then Bayes theorem states that

where π(θ|w) is the final (posterior) probability density for the 
retracked parameters. Taking the values of θ that maximise π(θ|w) 
would give us retracked point estimates. Solving Bayes theorem 
is non-trivial but modern statistical methods such as Markov 
Chain Monte Carlo can be used. However this is computationally 
very expensive (see Severini et al., 2008).

Instead of having to solve Bayes theorem we now solve for 
the Bayes linear update:

where θ is the vector of geophysical parameters: normally h, 
Hs and σ0 but in the coastal zone we may fit more complex 
models. E(w(θ)) is the theoretical form of the waveform 
corresponding to the parameters θ and w is the measured 
waveform. E() is the expectation and V() and Cov() are the 
variance and covariance matrices respectively.

The  advantages of the Bayes linear retracker compared to 
MLE or least squares are:-
Fast

There is no non-linear optimisation involved
General

The method works with any parametric form for a waveform including 
those used in the coastal areas, where specular reflections from ̀ bright’ 
targets may be included.

Gives both estimates and uncertainty on the geophysical 
parameters
Easy to construct statistical tests to distinguish between 
different waveform models

This is particularly important in coastal analysis where we will want 
to test for the presence of `bright’ targets.

Sequential
Bayesian form means that it is naturally sequential 

An Example

To illustrate the method we use a simplified version of the 
Brown model given by:
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Bayes Linear Retracking
The full Bayes solution gives us the probability density of our 
parameters (sea surface height, significant wave height, etc) but 
we do not really need this amount of information. For almost 
all purposes a simple mean and variance would suffice (in fact 
most people are happy with a point estimate with no error 
information!). There is a version of Bayesian statistics that does 
not worry about the full probability distribution. It is known as 
Bayes Linear statistics and reformulates Bayes theorem in terms 
of the first two moments (means and variances/covariances). 

E(θ|w) = E(θ) + Cov(θ,w(θ))V (w(θ))−1(w − E(w(θ)))

V (θ|w) = V (θ)− Cov(θ,w(θ))V (w(θ))−1Cov(w(θ), θ)

where τ is time, h the height of the sea 
surface above a nominal level, Hs is the 
significant wave height, σ0 is the radar 
backscatter and tn is the thermal noise 
on the returned waveform. A example 
waveform (including simulated noise) 
is shown here.

Parameter h Hs σ0 tn
Truth 1.10 4.10 10.50  1.00 x 10-6

MLE 1.03 4.09 10.59  1.01 x 10-2

Bayes Linear 1.03 4.09 10.56  1.01 x 10-2

E(w(τ)) =
σ0

2

(
1 + erf

(
τ − h

Hs

))
+ tn
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Figure 1 An Example Waveform. The simulated 
waveform is shown by o’s; the true waveform by the 

solid line and the BL fit by the dashed line

π(θ|w) ∝ π(w(θ))π(θ)


