A demonstration of the potential of Cryosat-2 to contribute to mesoscale observation

1 – Abstract

Although the primary objective of ESA’s Cryosat-2 in cryosphere science, the altimetry payload is operated globally on ocean. This work illustrates that Cryosat-2 could be an asset for high-resolution (multi-mission) mesoscale observation. While its orbit and payload are not ideal for oceanography, Cryosat can still capture 50% to 66% of the mesoscale variability observed with ENVISAT or Jason-1 in the Gulf Stream in near real time. Cryosat-2 has the potential to mitigate the loss of high orbiters on operational NRT applications.

2 – Methodology

Data used:
- 30 days of Cryosat-2 data generated by the Cryosat-2 Processing Prototype (CPP) from CNES (20 Hz, GDR-like)
- LRM mode only (no dual-frequency or SAR data used)
- DUACS along-track SLA for Jason-2, Jason-1, and ENVISAT
- Period used: late October to late November 2010

Data preprocessing:
- Update of ancillary corrections (e.g., tropo, tides…)
- 20 Hz validation, filtering and compression to 1 Hz
- Global Cal/Val editing
- Cross-calibration with Jason-2 as a reference (standard DUACS processor, ENVISAT used as a model for parameters)
- Generation of along-track sea level anomalies (v.s gridded MSS CLS/CNES 2011)

3a – Qualitative improvements

Adding Cryosat to ENVISAT maps substantially changes the shape and intensity of mesoscale features in the Gulf Stream (F1). Cryosat improves the consistency with independent maps from the Jason tandem.

Comparisons between absolute topography from Cryosat + ENVISAT and SST or Ocean Color confirm (F2) that the contribution from Cryosat is beneficial (e.g., better shape of eddies and fronts).

3b – Quantitative estimates

We interpolated ENVISAT and ENVISAT + Cryosat maps on Jason tracks. From actual along-track measurements (IGDR) from Jason-2 and Jason-1, i.e. an independent truth, we can infer (F3) the benefits of using Cryosat (better consistency, i.e. reduction of difference RMS).

On average (F4) in the Gulf Stream, adding Cryosat yields a 7 cm RMS improvement, i.e. about 25% of the regional mesoscale variability.

The 4-sensor map is the best topography estimate in near real time. From differences to this reference, we can infer (F5) the improvement (reduction of difference RMS) from each satellite in constellations with 2 or 3 sensors.

Cryosat can capture about 50 to 66% of the mesoscale content seen by Jason or ENVISAT.

4a – Limitation: sampling

Cryosat’s orbit is geodetic (one year repeat cycle) with a 30-day sub-cycle (global homogeneous sampling), but no sub-cycle in the 7 – 15 day range. The resulting NRT sampling is extremely irregular (F6) if one wants to observe mesoscale (decorrelation in ~15 days).

As a result, the innovative content brought by Cryosat into multi-satellite NRT maps (F7) is located in 500 km wide bands alternating with 500 km wide “blind spots”. The bands propagate westwards (~60 km / day).

To infer the signal (in each grid point) contribution of Cryosat in a 4-sensor map, we performed a degrees of freedom of signal analysis in the mapping OI. While Cryosat’s contribution is 20% in average, the DFS analysis confirms that it is primarily located in these 500 km bands, which largely contrasts with the spatially homogeneous contribution of all other missions (F8).

4b – Limitation: error budget

Cryosat’s orbit and payload were designed for Cryosphere observation. This significantly increases Cryosat’s error budget on ocean despite the very good behavior of SIRAL and DORIS.

To infer the importance of this additional error, we have compared oceanic variability (F9) to a gross approximation of the additional error budget that is specific to Cryosat (F10):
- By comparing ECMWF wet troposphere to the radiometer correction from ENVISAT
- By comparing GIM-based ionosphere to the dual frequency correction from Jason-2
- By using the formal error map of the gridded CNES/CLS MSS reference (non repeat orbit)

Cryosat’s error is significant and even dominant except wherever mesoscale activity is very strong.

5 – Perspectives

There are two major perspectives to this successful demonstration:
1 – Exploitation of the SAR/doppler mode to cover high latitudes (e.g. Arctic) with 2 altimeters for the first time ever.
2 – Transition to operational NRT production (prototype processor ready and configured)

High quality L2 data (LRM+SAR) are needed.