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1. Overview 2. Data

The southeast Pacific sector of the Southern Ocean plays an important role in regulating the climate of Antarctica. This is the region where the| |[|Q Sea Surface Height: satellite altimetry observations, processed
Antarctic Circumpolar Current (ACC) reaches its southernmost latitude, and where the biggest source of the Antarctic Intermediate Water (AAIW) by SSALTO/DUACS, distributed by AVISO with support from
formation is located. Satellite observations of low-pass filtered (with 1-year running mean) sea surface height (SSH) from October 1992 to January CNES

2011 have revealed a large-scale pattern of the interannual/interdecadal variability. The positive (negative) phase is associated with higher (lower)| |Q Monthly wind stress and sea surface temperature: ERA-Interim
than average sea level west of the South America and lower (higher) than average sea level over the ACC and south of it. Similar pattern of the reanalysis, provided by the European Center for Medium
interannual variability has also been observed in sea surface temperature (SST) data (not shown). We show that the observed variability of SSH is Range Weather Forecast (ECMWF)

related to wind forcing over the region, and to Pacific Decadal Oscillation suggesting the importance of large scale teleconnections. The wind| |d Climate indices: Antarctic Oscillation index provided by the
strengthens/weakens the convergence/divergence zones that is reflected in the SSH variability. The coupled empirical orthogonal functions analysis of NOAA Climate Predictions Center, Pacific Decadal Oscillation
an ocean data synthesis product shows that the observed variability of SSH and wind stress is correlated with subsurface salinity distribution and can index provided by JISAO (University of Washington)

possibly be indicative of the Antarctic Intermediate Water formation rates. This is an ongoing work that is aimed to establish relationship between the| |Qd ECCO2 ocean data synthesis product: temperature, salinity,
interannual changes in SSH, the ACC frontal locations, winds, and the AAIW formation rates. and wind stress.
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4. Relation to wind forcing 5. Large-scale sea level, winds, and salinity in ECCO2
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The first coupled EOF mode of SSH and wind stress components: (A and D) — spatial patterns of SSH, (B
and E) — spatial patterns of t,and t,, (C and F) — time series of expansion coefficients for SSH (blue), T,
and t, (red). This mode explains 68% and 45% of the covariance of SSH and t,, and SSH and T,

covar.exp.=61.5%, r=0.89 covar.exp.=61%, r=0.94
T T T

respectively. In contrast to the individual EOF analysis, the coupled EOFs identify the modes of : | meesies o — T z — 5 —
behavior in which sea level and wind stress are strongly coupled. The first coupled mode of variability A /A/'f\\v —= ﬁ N - s A - = fe // = \—S““S’
between SSH and wind stress can be described as a strengthening and weakening of westerly and / \\ ~ / ; // N /

easterly (near Antarctica) winds, which is accompanied by fluctuations in SSH possibly related to =" / v \ v>w \ S N -

convergence and divergence of Ekman transport. Note that the maximum SSH variability occurs
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around the convergence anomaly zone at 45°S and the divergence anomaly zone at 65°S. This e
statistical relationship suggests that the interannual variability of SSH in the region is wind-driven and Figure 5.

barotropic in nature.
P The first coupled EOF modes of SSH and salinity (A), zonal wind stress and salinity (B), meridional wind stress and salinity (C), and wind

stress curl and salinity (D) in ECCO2. The first row shows the spatial patterns for SSH and wind stress, the second row shows the spatial

patterns for salinity section, and the third row shows the time series of the expansion coefficients. The time mean locations of the Sub-
6- Summary and OUtIOOk Antarctic Front (blue) and Polar Front (black) are drawn in the upper plots. The July-September mean salinity averaged between 80°W
and 100°W is contoured in the middle plots. SSH, wind stress, and salinity were averaged over austral winter (July through September)

18 years of satellite altimetry observations have revealed a large-scale pattern of interannual/ when the AAIW formation is maximum

interdecadal variability of sea level; this variability is related to wind forcing possibly through wind-

induced convergence/divergence (barotropic sea level variability); the correlation with PDO suggests Despite some differences with observations, ECCO2 captures interdecadal variability. It appears that SSH and wind stress are strongly
the importance of large-scale teleconnections coupled to the vertical salinity distribution. The AAIW is formed at the Antarctic Convergence zone between about 50°S and 60°S west

 The analysis of the ECCO2 model output shows that the vertical distribution of salinity is strongly of the Drake Passage. The formation of the AAIW can be explained through the Ekman transport processes and the divergence and
coupled to sea level and wind stress; convergence/divergence of Ekman transport west of the Drake convergence of water masses. When the northward flowing low-salinity Antarctic Surface Water encounters the Antarctic Convergence
Passage corresponds to an decrease/increase of salinity in the surface layer and in the core of the zone it starts sinking. Note that the maximum (positive) wind stress curl west of the Drake Passage induces Ekman convergence and
AAIW corresponds to minimum salinity in the surface layer and in the core of the AAIW (Figure 5D).

Next steps:

 Quantify the formation of the AAIW in the ECCO2 model and analyze its relationship to wind forcing

* Investigate the relationship between the ACC frontal locations and the AAIW formation Acknowledgements.
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