FOAM: From Ocean to inland waters Altimetry Monitoring

Goal: aggregate the past effort of several groups, in order to notably establish a homogeneous network of calibration sites geographically distributed for more robust characterization of the existing and future radar altimeter system instrument biases and their drifts.

~20 peer review publications from 2008 to 2012

Regional MSL trends from Oct-1992 to Feb-2012 (mm/year)

Method: transfer upstream and downstream series to the gauge location using a linear or quadratic model and compare to the gauges series => Biases

Poster

Conclusion: over rivers, altimetry biases vary

- with mission/altimeter (ENV-RA2+*ICE-1* ≠ J2-Pos3 + *ICE-1*)
- with algorithm (J2+*ICE1* \neq J2+*ICE3*, and \neq from J2+*ocean/MLE4*) and probably with location (as suggested by the large σ)

Absolute calibration of altimeters over the Lake Issykkul

J.-F. CRETAUX, M. BERGÉ-NGUYEN, S. CALMANT, V. ROMANOVSKI, B. MEYSSIGNAC, F. PEROSANZ, S. TASHBAEVA, A. ARSEN, F. FUND, N. MARTIGNANO, P. BONNEFOND, O. LAURAIN, R. MORROW, P. MAISONGRANDE

Absolute bias of Jason-1

Absolute bias of Jason-2

Kerguelen Islands CAL/VAL activities Poster

L. Testut (<u>LEGOS</u>), P. Bonnefond, O. Laurain (<u>OCA</u>), M. Calzas, A. Guillot, C. Drezen (<u>DT/INSU</u>)

• Permanent TG since 1993 at 20 Km from cal/val site

- Deployment of 3 moorings since 2009 under track #179
- GPS buoy session at cal/val site
- Instrumental developpement of a GPS buoy with DT/INSU
- •Development of HR barotropic model for dealiasing

	Jason-1 GDR-C	Jason-2 GDR-T	Jason-2 GDR-D
KER-FOAM (M1)	+47 mm (<u>std</u> =35)	+116 mm (std=41)	-71 mm (std=43)
KER1-BPR (M2)	-6 mm <u>(std</u> =55)	+96 mm (<u>std</u> =44)	-89 mm (<u>std</u> =48)
KER2-RDR (M3)	+46 mm (<u>std</u> =49)	+114 mm (std=48)	-70 mm (<u>std</u> =52)
- Mean	+29 mm (<u>std</u> =46)	+109 mm (std=44)	-77 mm (std=48)
CORSICA	+77 mm (std=35)	+155 mm (std=35)	-1 mm (std=37)

#13

The absolute differences in the biases are due to the uncertainty of the link (mainly geoid) between the offshore (KER-FOAM) and the coastal (KER) in situ data: realized with only a 3-hour session of the GPS buoy. This will be updated in a near future

Vanuatu:

Using radar altimetry, combined with bottom pressure data, to

measure underwater vertical movements

V. BALLU, P. BONNEFOND, S. CALMANT, M.-N. BOUIN, B. PELLETIER, W. CRAWFORD, C. BAILLARD, O. LAURAIN, O. DE VIRON

Comparing altimetry and seafloor pressure data in non-dedicated sites can bring new insights on:

- Calibration aspects that need specific configuration (ex. problem of coastal land contamination)

- Development of new geodetic methods (here the measurement of seafloor vertical motion, due to geodynamics).

Combining altimetry and seafloor pressure, we have demonstrated **subsidence of the over-ridding plate close to the plate limit**.

Poster

Evidence for locking of the subduction (earthquake risk).

=> This was made possible thanks to recent reprocessing of Envisat that reconciles the SSH series with those of T/P and Jason-1&2 Developing new applications of altimetry, for measuring ground deformation: towards a better assessment of seismic risk in subduction zones.

Regional CALVAL method in Corsica: Validation of the Jason-1, Jason-2 and Envisat missions at non-dedicated sites

M. Cancet, E. Jeansou, P. Bonnefond, O. Laurain, F. Lyard, P. Femenias, E. Bronner

Generic regional CALVAL method:

✓ for any satellite altimetry mission, even without any dedicated calibration site

✓ for any types of orbits including non-repetitive ones

 \checkmark to multiply the estimates to reduce the noise in the mission bias quantification

 \checkmark to monitor the missions at non-dedicated sites

... developed for the Senetosa calibration site and TP/Jason nominal orbit

 \rightarrow Need for an evaluation of the method robustness

- at other sites than Senetosa → Ajaccio
- for other orbits \rightarrow Envisat nominal orbit, J1 interleaved mission
- → Cross-calibration experiment for Jason-2 and Envisat in Corsica

Main results:

✓ In Senetosa, for the three missions:

→ Very coherent results, in agreement with the estimates of the other groups Jason-1/2 in Senetosa, Harvest, Gavdos and Bass Strait, Envisat in Ajaccio

✓ In Ajaccio for Envisat and Jason-2:

 \rightarrow Differences up to ~2.5cm in some cases, probably linked to dubious in situ measurements in the tide gauge time series \rightarrow Still under investigation

Poste

Future work

Calibration of Envisat shifted orbit in Corsica

→First experiment of local/regional in situ calibration
Calibration of Envisat nominal and shifted orbits in Harvest

- \rightarrow First local in situ calibration of Envisat in Harvest
- →Different ocean dynamics conditions / Corsica
 →More local points for comparison with the global CALVAL

Perspectives

Calibration of non-repetitive orbits

→Estimation of the bias for missions on non-repetitive orbits, at various calibration sites (ex: Cryosat-2)

Calibration of missions on new orbits

→Estimation of the bias for missions without any dedicated calibration site (ex: Sentinel-3)

Regional method for non-repetitive orbits

Future missions: AltiKa, Sentinel-3, Jason-3, Jason-CS... **Other sites:** Harvest, Gavdos, Bass Strait...

Integrated effect of the land contamination over the full set of data available

For each cycle, the SSH bias (altimeter - tide gauge) is the result of the mean of all the SSH biases evaluated at each 20-Hz (or 10-Hz for T/P) point on approach to the coast and entering the surfaces mapped with the Catamaran-GPS. These individual "high-rate biases" are saved and can be stacked over a long period to be able to extract any persistent behavior as a function of distance to the coast.

altimeter land contamination (derived from Figure 7)

Site / Instrument	Slope (mm/km)	Bias differences (mm)	
Senetosa (5 km to 10 km)			
ALT-B (TOPEX/Poseidon)	+2.4	+4.6	
POSEIDON-2 (Jason-1)	+7.2	+7.6	
POSEIDON-3 (Jason-2	+8.6	+6.1	
Ajaccio (RA-2, Envisat)	1000	~+30	
7 km to 13 km	+9.1		
13 km to 19 km	-7.7		
19 km to 22 km	+6.8		

estimated from the area where altimeter should not be contaminated: 10 km to 20 km at Senetosa and only at 13 km for Ajaccio (see text in the beginning of section 3.1.1 for details).

M

N

A

Т

0

N

Differences (mm) in the measurement system between T/P, Jason-1 and Jason-2 during the Formation Flight Phases on common cycles					Corsica	
	Absolute biases	Orbit - Range	Corrections	Expected from remaining instrumental errors [*]	Dry = -9 mm Wet = +19 mm lono dual = +3 mm SSB = -17 mm	Altimeters Calibration
Jason-1 POS-2 (GDR-C)	83	79	-4	-61	Dry = -9 mm Wet = 0 mm	
T/P ALT-B (improved MGDR ^{**}) – Jason-1 POS-2 (improved GDR-C ^{***})	81	84	+3	-61	SSB = $+9 \text{ mm}$	O R M
Jason-2 POS-3 (GDR-D) – Jason-1 POS-2 (GDR-C)	-74	-58	+16	-61	Wet = -15 mm lono dual = +7 mm SSB = +24 mm	A T I O
Jason-2 POS-3 (GDR-D) – Jason-1 POS-2 (improved GDR-C ^{***})	-61	-58	+3	-61	Very close to what is expected from remaining	F L
*117.02 + 3.16 – 180.92 = -60.74 mm (Jason-2 – Jason-1) - wrong altimeter internal path delay value used on Jason-1 - wrong altimeter PRF applied in the ground segment on Jason-1 (truncation effect) - antenna internal Path Delay reference error ** TMR replacement products + std0905 orbits (GSFC)					instrumental errors lono dual = +7 mm SSB = -4 mm	I G H T
*** new MLE4 SSB (Tran et al., 2010) and Enhan	ced Path Delay	y (Brown, 20	010)			Р
	90 O					H A S E S
OSTST meeting, Venice, September 2012						

Calibration from Corsica

Absolute biases over the whole data sets:

Jason-2: $-1 \pm 5 \text{ mm} (\text{GDR-D})$ Jason-1: $+77 \pm 3 \text{ mm} (\text{GDR-C})$ T/P ALT-A: $0 \pm 8 \text{ mm} (\text{MGDR}^{++})$ T/P ALT-B: $0 \pm 4 \text{ mm} (\text{MGDR}^{++})$ T/P POS-1: $-12 \pm 10 \text{ mm} (\text{MGDR}^{++})$ EnviSat: $+447 \pm 7 \text{ mm} (\text{GDR-C})$ ERS-2: $-60 \pm 18 \text{ mm} (\text{OPR-2})$

Jason-1&2 main results:

Better agreement between Jason-1&2 during FFP when upgrading Jason-1 (wet/EPD+SSB)

=> differences very close to expected remaining instrumental errors Jason-2 with GDR-D => no more significant SSH bias Jason-2 retracking => SSH relative bias (MLE4-MLE3) = -23 mm (mainly SSB) and ranges have different behavior when approaching the coast (<10 km)

FOAM major issues

Inland waters:

Amazon basin: Jason-2 and Envisat biases (ICE1) close to Corsica study Issyk Kul lake: very coherent results with those from the different calibration sites (as noticed during OSTST 2011)

Ocean

Regional calibration: coherent results with absolute calibration in

Corsica

Kerguelen: first results very encouraging, need to better tie offshore /

FOAM Follow-on is on going with focus on new missions (SARAL/Altika, ...), new retrackings and new technologies (GPS-reflectometry), ... **From Ocean**

Altimetry

Monitoring

to inland waters

C O

Ν

С

L

U

S I O

N

