

CryoSat-2 Interferometer Performance and Application to Mesoscale Observations of the Kuroshio Current

Natalia Galin¹, Gerald Dibarboure², Walter H.F. Smith³, Duncan Wingham, Robert Cullen⁴, Isobel Lawrence¹, Eric Leuliette³,

[1] CPOM, Earth Sciences, University College London, United Kingdom,
[2] C.L.S. Space Oceanography Division, France,
[3] NOAA, Satellite Altimetry Lab, Maryland, United States,
[4] ESA-ESTEC, Noordwijk, The Netherlands.

The CryoSat-2 Payload and Operating Modes.

"SARIN mode"

Illuminated area narrowed along-track by synthetic aperture processing & second receiving antenna forms an across-track interferometer. Star trackers determine baseline orientation.

• "SAR mode" (SAR)

Illuminated area narrowed along-track by synthetic aperture processing

• "Low resolution mode" (LRM)

Conventional pulse-limited altimeter but with a slightly elliptical antenna

Estimating the interferometer angle

$$\sin(\theta) = Arg(\Psi(0)) / k_0 B + \varphi_d$$

18 19

Measured scale factor: 0.973

Theoretical scale factor: **0.970**

Achieved a precision of 25 microrads at 10km

First instantaneous ocean surface vector gradient!

Accuracy of 10 µrads at 1000km scales If we fit a model to the data, can we reduce our noise to 10microrads?

	σr	$\sigma_r/\sqrt{(N_a-1)}$	$\overline{\epsilon}_r$
SIRAL 'A'			
1595	20.4	0.6	3.4
1599_a	23.4	0.7	4.2
1599_b	20.0	0.8	-3.7
1600	22.6	1.2	-18.1
1601	20.5	0.6	3.1
1607	22.1	0.9	8.6
1610	21.6	0.8	-8.8
SIRAL 'B'			
1192_a	24.5	0.8	-16.0
1192_b	25.6	1.3	6.6
2100	19.1	0.7	13.4
2103	25.8	1.0	8.6
2119	22.8	0.9	-9.7
2120	25.0	1.0	2.7

Ocean mesoscale, the attraction, requirements and difficulties

The gridded nature of 2D SSH maps (AVISO / DUACS) can be misleading

Pulse-limited altimetry provides a 1D sea surface height (SSH) observation (along-track profiles ≠ not swath)

2D SSH fields (AVISO maps) are reconstructed using Objective Analysis (optimal interpolation) from 1D profiles

<u>Illusion</u>: homogeneous map with mesoscale observation

Reality: strongly anisotropic by nature

- Constrained by measurements where/when there are 1D profiles
- Constrained by correlation scales away from 1D profiles

Correlation scales are realistic (derived from observation) but only a statistical description of mesoscale signals → not to be taken for granted

Courtesy: G. Dibarboure, CLS

a)

LRM sea surface height profile

SARin height & slope profile

Could the cross-track slope from an <u>actual</u> SARin instrument be used to enhance 2D SSH maps and to reduce the anisotropy ?

Short answer : Only for 2----structures in strong currents

Fitting the interferometer angle

$$sin(\theta) = Arg(\Psi(0)) / k_0 B$$

CROSS-PRODUCT IMPULSE RESPONSE

$$\cdot exp\left[-2\left(\frac{\left(\rho cos\vartheta-\mu-(\varsigma/\eta)\right)^2}{\gamma_1^2}+\frac{\left(\rho sin\vartheta-\chi-\beta/\eta\right)^2}{\gamma_2^2}\right)\right]$$

Numerical approximation to the cross-product: $X(\sigma^{0}, \theta, SWH; \tau)$

The bias versus noise trade-off

SARIN data over the Kuroshio region, June, 2012

3. Yes, CryoSat-2 can see dynamic topography. Now, let's pick a 'mesoscale' feature and zoom in...

0.66

2.01

2.32

1.99

1.66

0.0179

maximum

range

4. What does the feature look like along-track?

4. What does the feature look like in along-track slope?

4. What does the feature look like in ACROSS-TRACK slope?

Summary

- We have developed and demonstrated the use of a numerical model to fit the SARIN cross-product.
- Unfortunately, while the model eliminates the biases in the fitted parameters, the noise on the phase-difference increases.
- We anticipate that the phase noise will be of the order of 5 µrads at scales of 100 km. Consequently, we have hope of detecting mesoscale features.
- Currently, we haven't been able to conclusively demonstrate the presence of mesoscale features in the across-track slope. BUT we've only just started looking.
- We have to understand the biases in the CS2 across-track slope.
- We have to look the spectrums of the across-track slope from EGM08 and CS2. Perhaps EGM08 is missing some higher frequency components.
- We have to perform a large-scale quantitative comparison to Jason-1/2 to really understand the capacity of this instrument to detect and measure mesoscale features.

