

Assessment of Orbit Quality through the Sea Surface Height calculation

Annabelle Ollivier, Sabine Philipps, M Guibbaud, JB Arnould - CLS Luca Cerri, Nicolas Picot - CNES

Introduction

- Altimetric system have benefitted from the last improvements of POD standards
- In return, the study of altimetry performance provides a complementary assessment to intrinsic orbital diagnosis

Plan of the talk:

- 1- Mesoscale monomission effects
- 2- Multimission consistency effect
- 3- Long term effects

Introduction

• Main Differences between both standards considered: GDR-C and GDR-D POE:

 GDR-D Orbits better than GDR-C in terms of variance at cross overs for all missions → good indication of quality for mesoscale scales (lower than 10days)

→ Better consistency of Sea Surface Hight at crossovers, increasing the relevance of mesoscale measurements

Monomission diagnosis

 GDR-D Orbits better than GDR-C in terms of mean difference at cross overs for all missions → Systematic geographical biaises between asc/dsc passes behavior are largely reduced :

Ascending/descending SSH cross-over mean differences over the entire mission

POE GDR-C spanning 2008-2012 Mission j2, cycles 1 to 145

Jason-2

POE GDR-D spanning 2008-2012 Mission j2, cycles 1 to 145

Monomission diagnosis

 GDR-D Orbits better than GDR-C in terms of mean difference at cross overs for all missions → Systematic geographical biases between asc/dsc passes behavior are largely reduced :

Ascending/descending SSH cross-over mean differences over the entire mission

POE GDR-C spanning 2003-2012

Envisat

POE GDR-D spanning 2003-2012

Mission en, cycles 6 to 113

Mission en, cycles 6 to 113

Amplitude of geographical correlated patterns are reduced

→ Mean Asc/Desc geographically correlated patterns are reduced for all missions OSTST 2012, Venice

• Strong geographical East West bias signature and increasing with time already shown to be related to the gravity field included in the orbit solution (OSTST 2011)

Mean difference Envisat (V2.1) - Jason-1 at crossovers over 2011 (with model wet tropo)

• Strong geographical East West bias signature and increasing with time already shown to be related to the gravity field included in the orbit solution (OSTST 2011)

Mean difference Envisat (V2.1) - Jason-1 at crossovers over 2011 (with model wet tropo)

→ Discrepancies between missions largely reduced (Ollivier et al. Marine Geodesy 2012) OSTST 2012, Venice

CesaMultimission consistency: mutual benefitsSERVICEof cross-comparison between missions

- Standards D improve consistency of monomission and multimission/ C standard
- Strong impact of Envisat (lower altitude) but impact on all missions Mean difference Envisat (V2.1) -Jason-1 at crossovers over 2011 (with model wet tropo)

EN GDR-C POE/ J1 GDR-C POE

EN Gdr-D POE/ J1 GDR-C POE

EN Gdr-D POE/ J1 GDR-D POE

Removal of Envisat error contribution

Removal of Jason-1 error contribution

➔ Multimission comparisons enable to evidence discrepencies and possibly to improve all missions

Multimission consistency: mutual benefits of cross-comparison between missions

• Standards D improve consistency monomission and multimission/ C standard

Mean difference Cryosat-2-Jason-2 at crossovers over 2011

C2(*) Gdr-D/ J2(reprocessed+ model wet tropo) with GDR-C POE

C2 Gdr-D/ J2(reprocessed+ model wet tropo) with GDR-D POE

➔ Very fine known difference, hidden until now can now be evidenced in the cross over differences

(*) Cryosat data consist in CPP delayed time reprocessing , in LRM mode

Multimission consistency: mutual benefits of cross-comparison between missions

• Concerning Jason-1 and 2, the consistency was already very good (sister missions). Yet, some questions remain (Fine N/S signature):

J1-J2 centered mean SSH difference during the formation flight phase (july2008-january2009)

Those fine N/S discrepencies are observed on GDR-D CNES solutions but not in GSFC_0905 solutions... The difference are not due the lack of GPS on J1 (already tested with DL solutions) but might be justified and explained. \rightarrow Tests to be done concerning the differences of SAA modelling

Long term applications

Orbit standards and long term applications

- Global MSL: week impact on Envisat difference using GDR-D-GDR-C POE < 0.2mm/yr, negligible for other missions.
- Asc/dsc MSL discrepencies:
 - reduced for J2 (0.8mm/yr diff with GDR-C POE / -0.05mm/yr using GDR-D POE)
 - negligible impact on other mission: already very good consistency for EN and J1 (absolute difference < 0.3mm/yr)

→ No/weak impacts of GDR-C/D evolution on the Global Mean Sea Level trends

Orbit standards and long term applications

The change in the time varying field used in GDR-C and GDR-D standards corrects for effects varying with a large time dependency: this has a signature on the regional Mean Sea Level trends:

Centered difference of regional Mean Sea Level trends between Jason-1 and Envisat missions

EI EN Gdr-D POE/ J1 J1 GDR-D POE

→ We are now more confident in the regional MSL... for this period (2002-2011)...

Orbit standards and long term applications

- Some questions were raised in previous OSTST concerning the divergence between the « Real » Gravity field and the models used for POD purposes.
- We analysed the impact on a POE built (L. Cerri, CNES-POD) with a 10 day- gravity field in input.

Impact on the Mean Sea Level trends between Grace10days - GDR-D orbit solution

→ Interesting signature but Very weak impact on global and regional MSL:
-Globally: Less than 0.04mm impact for a goal of 0.5mm/yr precision (negligible)
-Regionally: Less than 0.5mm/yr for a goal of 3mm/yr precision (weak)

Conclusions

Summary:

- GDR-D POE standards, compared to GDR-C standards:
 - improve the monomission perfo
 - improve the consistency between independant missions
- Very weak discrepencies between J1/J2 verif phase for cnes standards are still questionable.
- Using Grace 10 days gravity field in the POE instead of the one used in GDR-D POE does not show any significant impact on the global and weak impact on the regional MSL results for Envisat.

Lessons learned:

- Cross comparisons studies highlight weaker and weaker discrepancies between sister or independent missions. Some remaining low frequency bias are still questionable and could still be improved.

Thank you!