

Ocean Surface Topography Science Team Meeting Precision Orbit Determination Splinter

Reducing the Dependency of Precise Orbits on Time Varying Gravity Field Modeling Errors

L. Cerri, A. Couhert, S. Houry, F. Mercier⁽¹⁾ with inputs from J.M. Lemoine⁽²⁾

September 28, 2012

Venice, Italy

(1) CNES POD Team, Toulouse, France

(2) CNES/GRGS, Toulouse, France

- Errors in the modeling of secular variations of the gravity field cause signatures which are significant for regional MSL applications
- □ Current approach (GDR D)
 - GDR orbits are DORIS+SLR solutions including GPS when available
 Same approach for Jason-1, Jason-2, Envisat, Cryosat, HY2A
 - Secular variations in gravity field are taken into account by 50x50 drifts included EIGEN-GRGS_RL02bis_MEAN-FIELD field
 - This linear model provides significant improvement in the orbit performance wrt to the previous generation of orbits
 - Altimetry, SLR residuals comparison with reduced-dynamic GPS orbits (Jason)
 - Comparison with orbits obtained using the 10-day time series of GRACE derived fields

Context, Scope and Objectives

The difference between orbits using the mean model (GDRD) and the time series of 10-day fields is quite stable (expected radial accuracy of DORIS-only dynamic orbits is < 1.5 cm RMS)</p>

Context, Scope and Objectives

Stable RMS of radial orbit difference between GDRD DORIS-only dynamic orbits (24hr 1/rev) and JPL reduced dynamic GPS orbits

- Orbit difference increases when drifts are removed
- Stable orbit differences (RMS) between Grace-based TVG orbits and JPL11A

Context, Scope and Objectives

Limitations :

- We cannot safely extrapolate linear trends if the underlying geophysical processes are not linear; we need a solution for POD in case GRACE data were lost
- Several potential contributors to MSL trends estimates (Cryosat-2 and SARAL-AltiKa) rely only on DORIS+SLR data : reduced-dynamic approach is limited by observability
- The performance of GPS-based reduced-dynamic orbits with Sentinel-3 GPS receiver remains to be assessed

Interest in assessing the capability of DORIS to observe local mass variations on the long-term

• **DORIS-only dynamic orbits** (24hr 1/rev , 1 drag coeff every 3 revs)

Sensitivity to variations in spherical harmonics

6

Point Mascon Model : a simpler approach

Alternative: solve for the mass of N point mascons at known locations

Acceleration on the satellite induced by the *i-th* point mascon

$$f_i = -\frac{\mu_i}{d_i^3}\vec{d}_i + \frac{\mu_i}{r^3}\vec{r}$$

Additional term ensures total mass conservation

No constraint applied to conserve the center of mass position – verified a posteriori (see backups)

Point Mascon Model : motivation

Even a single Point Mascon (Greenland) is quite representative of the difference in the geopotential acceleration between 2005 and 2012

Cryosat , arc 094 - Point Mascon Fit (Greenland : -40°,72°) - Radial Component

Point Mascon Model : method

Ccnes

- We use only DORIS data from Jason-1, Jason-2, Cryosat-2, Envisat - Observability is brought by the low-altitude-high-inclination satellites (Envisat + Cryosat span 2002 – 2012 period)
- The normal equations from all satellites are stacked over 180-day intervals to obtain a time series of mass values
- This Point Mascon model is then used in Doris-only dynamic POD : mass values are solved-for on an arc-by-arc basis, but tightly constrained to this empirical model

□ Validation :

- Mascon mass trends compared to GRACE EWH time series
- Comparison to orbits using the 10-day time series of GRACE fields
- Independent SLR residuals on DORIS orbits

DORIS Mascons Vs GRACE time series of EWH

12

Envisat: 10-day series – GDRD w/o drifts

Envisat: 10-day series – GDRD

Envisat: 10-day series – GDRD w/o drifts + DORIS mascon model

□Trends in the hemispheric radial differences of Envisat orbits without Grace-derived drifts are reduced from 3 mm/yr to <1 mm/yr when the mascon model is used

Orbit solutions using mascon model without drifts are close to GDRD solutions

Radial orbit difference with respect to JPL11A reduced-dynamic GPS orbits is also slightly reduced when the mascon complement is used

- DORIS measurements from all altimeter satellites provide sufficient observability to solve for a 6-mascon complement to the standard GRACE-derived fields
- This approach improves the orbit solutions over the 2002-2012 time span, especially when GRACE-derived drifts are removed from the gravity model
- ❑ As a result, the mascon empirical approach is promising in maintaining and monitoring the DORIS-based orbit performance in case of loss of the GRACE time series, to the extent that locations where the strongest long-term variations occur remain known over a 3-4 year time-span
- Prospects : include SPOT data (SPOT-2 overlaps with TOPEX), GPS and SLR when available, compare to classic SH approach

Backups

DORIS Mascon model

Center of mass position of the DORIS Mascon model

¢cnes

¢cnes

