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Introduction Application to altimetry in the North Brazil current

The Kalman filter is a widely spread data assimilation metinooceanography. The stan- Experiment:A 5-year simulation of the circulation in the North Brazilrcent region is performed with a
dard Kalman filter observational update requires the invarsf the innovation error covari- regional configuration of the NEMO model. The 300 output shaps (one every 6 days) determine the
ance matrix, what is prohibitive regarding its size. Mosplementations of the Ensemble states. The mean of this ensemble is taken abdti@round state (see Figure 2, upper panel). To parameterize
Kalman filter circumvent this difficulty assuming the diagaty of the observation error the background error covariance matrix, we use the covegiah 59 snapshots (one per month over 5 years,
covariance maitrix, what makes the analysis calculationarigally tractable. However, except those that are less than 1 month away from the tru .stagure 2, bottom panel, illustrates what the
when observation errors are actually correlated spatigsligh hypothesis yields too much square root of the matrix diagonal looks like.

weight to the observations, and may lead to an inappropusdef the observations. Spatia
altimetric measurements, because they are performed #&lacigs, are very likely subject
to spett_tlal error correl_atlons. Intt_hl,:,hprtesentatlon, _\;vecd?besﬁ para;)netterlzatlontof the_ obl-- served over the full domain. with4&cm error stan-
servation error covariance matrix that preserves its ag_ ape, but represents a simple dard deviation. Two observation vectorsare gen- o
first order autoregressive correlation structure of theeplagion errors. This parameterizar- e

As observation, Sea Surface Height (SSH) Is ob-

. . . . . _ erated from the true state: a first one, by adding un- Sz 08 a5 3o a7
tion is based upon an augmentation of the observation veatiogradients of observations. Y J 00— 000 _ox2_ 0w _oas

correlated observation noise, and a second one, by -lg& =
adding a correlated observation noise, with a covari- ! § ¥
ance maitrix similar to Eq. 3 for the 2-dimensional « |
case. The noise is scaled to have a uniform standard -«

deviationoc = 0.04 m. The observation error covari- T T T a5 a0 \

ance Is parameterized either with a diagonal matriX, Figure 2: Mean (top panels) and standard devia
or with a non-diagonal matrix, following the method  tion (bottom panels) of the 5 years simulation, for
described previously. the sea surface height (in m, left panels), and sea

: _ surface velocity (in m/s, right panels).
Analysis update In square | Uncorrelated errors
root or ensemble Kalman filters

In Ensemble Square Root Filters (ESRF), the covariancebmatdecomposed aB/ =

SfoT. The ESRF correction is either calculated with (using aas@mnocessing of obser-
vations;Houtekamer and Mitchell, 2001)

Numerical applications to ocean altimetry show the detmakeffects of specifying the
matrix diagonal when observations errors are correlatetihaw the new parameterization
not only removes the detrimental effects of correlationg, dso makes use of these cor
relations to improve the data assimilation products. A itetgoresentation is available in
Brankart et al. (2009).
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Observation errors are spatially uncorrelated, and
R is diagonal. Figure 3 on the left shows the error
standard deviation, as measured using the ensem-
s03 o0 005000 000 0% o1 | ble (top panels), and as estimated by the scheme
| e : (the square root of the diagonal ¢, bottom
panels). Both are consistent for altimetry (in m,
left panels) and for velocity (in m/s, right panels).

1

sx = s/ EsHT |asHESNHT + R] Ty — HXY), (1)

or with a prior transformation featurinig= (HS/)' R~1(HS/) (Phamet al., 1998),
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Correlated errors, with diagonRl parameterization
In the first case, the serial processing implies that observarrors are uncorrelatedR(is
diagonal); In the second case, as the inverdg & required R is often considered diagonal

for simplicity, even if observations are actually corretat
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Observation errors are spatially correlated, Ruis .
taken diagonal. Figure 4 on the right displays the
same fields as Figure 3, for this experiment. The

L[near transformation Qf the inappropriate parameterization Bf leads to a sig- i
observation vector to simulate correlations nificant discrepancy between the errors estimated by %

the ensemble and by the error modes.

Rationale
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We consider a observation transformation mdattixDefine

e vy = Ty, with covariance matriR *; Correlated errors, with consisteRtparameterization

e H"=TH the transformed observation operator. gy _i | |
I A\( Observation errors are spatially correlated, Bnd
% IS parameterized using the observation gradient

| method. The coherence between errors estimated
with the ensemble and with the error modes Is re-
stored. Residual errors are higher than in the un-
correlated case for altimetry, but not much for ve-

By computing the new incremedk™ using Eq. 2, it can be shown that it is equivalent to
assimilatgly ™, R") and(y,R) if y" = Ty andR~! = T/R*~IT.
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Example of application: gradient operator in one dimension

: : T : : : : locity. rrelations in observations of altimetr
Let us introduce the transformatign” = Ty = . y whereT'; is the identity matrix, ocity. Co e_at ons in Observ . y
Ty actually provide guantitative information on ve-
_ P L o 21 0 _L_ o S\ e locity.
T the gradient operatotl’y ;; = Aé L If R™ iIs homogeneous, LR = 8 o1 | TEESECRS \ S T T N L
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. 1
thenR verifies _ _
I -1 0. 0 0 O
-1 2 =1 --. 0 0
B 1 1 0 -1 2 . - 0 5
RI= ST+ | e (3) Conclusions
o EVANS 0 L 2 210
8 8 - ‘(1) _f ‘1 A new parameterization of the observation error covarianatix has been proposed, which:
and it can be proven that this is a consistent discretizaifdhe inverse of the covariance e IS based on an augmented observation vector approach (raudiregts of observations here);
function 5 " e represents some types of spatial correlations betweemwlbiesm errors;
o Jy; : o) . .. :
Rip) = ?O exp (—7> with  £=— (4) e preserves the numerical efficiency of Ensemble filters selsem
1
This parameterization has been used to study the impactidfoBServation correlations on SSH and velocity
0 | analysis. It has been proven accurate and efficient.
i | This work was conducted as part of the MERSEA project funded by the E.U. (Contract No. AIP3-CT-2003-502885), with additional
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