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The 20-year altimetric record of global average mean sea level (MSL), Requirement: OSTST 2010 recommended that an altimetric observing system NorESM1 05* 15 20 5.0 for 21st century of RCP45 run. b) Incr case
based on instruments in both the TOPEX/Jason orbit and others (altimeter plus all supporting data, field campaigns & calibration sites) should have MPI-ESM-LR 1 02 04 -0.1 i glo.bal mean sea level for RCP85 condi-
(ERS/Envisat & GFO) has a trend of ~2.7 mm/yr, with much short-term a system drift "within 1 mm/yr". Here this is interpreted as the uncertainty should CCSM4 0.5* 18 — 43 tions instead of RCP45.

variation (e.g. due to El Nino). have a s.d. < 0.5 mm/yr.

All the CMIP5 models analysed lack interannual variability in their rate of MSL rise.
Some show no change with seasons or with 100 years of warming — presumably
model specification does not permit it. Even more surprisingly there is not a full
consensus on the basics:

Seasonal cycle: 9 peak in Sept-Oct; 3 in March-April

Current MSL rise: 9 positive (range 0.1-9.0 mm/yr); 4 negative

Change in MSL rise: 5 increase in rate (or less negative); 4 decrease in rate (or
more negative)

Effect of greater warming: 5 have enhanced sea level rise; 4 have diminished
rates.

Altimeter bias: Uncertainty
in internal path length is of
order 100 mm for a mission.
Dedicated cal/val sites can
reduce this to ~7 mm in the
first 6 months and to ~4 mm

W o given many years (Haines et
Twersensors Al (O T al., 2003; Bonnefond et al.,
s | L 2003; Watson et al. 2004).
B Equpment il LR Using global data from the
By g \§ tandem phase, uncertainty
may be reduced to 1-2 mm
(Leuliette et al., 2004;
Dettmering & Bosch, 2010).
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These models can give us only minimal insight into the expected rates of changes.

What can we learn from the past?

There are clearly no century-long measurements of global mean sea level, but
Church & White (2011) have developed a reconstruction based on recent altim-
etry plus long tide gauge records. I examine this reconstruction as a guide to the
magnitude of the interannual to multi-decadal variability within the natural

Harvest oil platform, equipped for altimeter calibration
(from Haines et al., 2010)

Temporal variation: Long-term validation reveals slow drifts in the observing
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i R system, with uncertainty of order 0.4-1.0 mm/yr (Leuliette et al., 2004). Individual
) altimeters have also had step changes of 0.5 mm (Leuliette & Miller, 2009), which
%1: are best estimated through comparison with independent altimeter systems
]
%0 Lack of continuity: If there is no overlap (explosion on launch / telemetry or
E stabilization failed prematurely / lack of international funding!), then altimetric
—§ datasets would be stitched together via their separate calibration phases (assuming
S that we don't have complementary altimetric missions on alternative orbits.) This

would be ~10 mm (root sum of squares of individual calibrations).
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a) Global MSL from Church & White (2011) reconstruction, with illustrative
trends for 10-yr segments. b) Calculated trends for overlapping 10-yr segments:
mean = 1.67 mm/yr, s.d. = 0.91 mm/yr.
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Variability in the determination of trend decreases as length of segment increases,

23 years is needed to reduce s.d. below 0.5 mm/yr

investigate the confidence of the trend estimated from a sequence of
altimeters, noting the duration required to reduce uncertainty below 0.5 mm/yr.
Consider a set of altimeters, each running for 5 years in a near-global reference

Caﬂo w.tss'xoﬂs ~ ~ orbit, with each launch timed for 6-month overlap with predecessor. Each will

leoY‘w ’y@af m o m l " l " g measure the true MSL signal, but have uncertainty in the instrumental trend, t;,

o™ ° -@Wl ? and in relative to predecessor, b; (see schematic above). Typically with n such

HWSW e pdt missions, the uncertainty in the overall estimated trend will be, 61, is given by

Error Sources

Series of 200 simulations were run for each case to note the duration needed for
Finally, I consider the challenge of determining the long-term trend when there are both real interannual variability in MSL

e ) ot to be less than 0.5 mm/yr.
and uncertainties in the observing system.
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Two versions of the observing system are evaluated, along with 3 grades of interannual variability, since the values I de- mm/yr mm/yr mm/yr mm/yr  mm/yr
rived from the Church & White reconstruction may be larger than for a true global altimeter system. Thus simulations are
performed with a) 100%, b) 75%, c) 50% of the variability calculated from their dataset (note different scaling of black 0 mm 10 10 10 11 22
line in figure). lmm 10 10 10 13 24
Case 1 has all high-quality ("reference class") altimeters, with a r.m.s. uncertainty in instrument drift of 0.5 mm/yr, and the 2 mm 10 10 10 17 27
AckHOWIedgeme"ts mismatch between successive missions having a r.m.s. of 2 mm. Case 2 is the same except there is no overlap (tandem 3 mm 10 10 15 22 31
h t the start of the third missi the r.m.s. rtainty in the bias bet 1ssions 2 and 3 1s 10 :
Thanks to John Church & Neil White for making their reconstruction dataset phase) at the start of the third mission so the r.m.s. uncertainty in the bias between missions 2 and 3 1s 10 mm 4 mm 15 17 22 29 41

available, and to Remko Scharroo for providing the figure on MSL rise from altimetry.

I am also grateful to Phil Woodworth for comments on the original report. 1251 Cl) 100% > mm 24 26 31 42 S2
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et s 10 15 0 73 30 33 0 assist in the dete.:ction of step changes in altin.lete.:r bias and
also reduce the impact if there is loss of continuity.

Uncertainty in trend as a function of duration (black lines represent
different assumed levels of natural interannual variability)
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