Anisotropic filtering to improve the geodetic determination of the Surface Geostrophic Currents: Edge Enhancing Diffusion

(1) University of Alicante, Applied Mathematics, EPS, Alicante, Spain (jms.reales@ua.es)

(2) Danish National Space Center, Department of Geodesy, Copenhagen, Denmark

J.M. Sánchez-Reales ⁽¹⁾,

O.B. Andersen ⁽²⁾, **M.I. Vigo** ⁽¹⁾

OSTST Meeting, 22-29 September 2012, Venice

ABSTRACT

The Surface Geostrophic Currents (SGC) can be determined from the gradient of the Mean Dynamic Topography (MDT) which is defined as the mean sea surface height referenced on the Earth's geoid. Due to the noise in the MDT, particularly for short space wave lengths, some filtering is required before the SGC computation. Since the SGC have a strong directional behaviour (emphasized when the current is stronger) anisotropic filtering would be preferred for the case. Here we deal with the capabilities of the Edge Enhancing Diffusion (EED) filters for filtering the MDT in order to improve the computation of the SGC. It is proved how this method conserves all the advantages that the non-linear isotropic filters have over the standard linear isotropic Gaussian filters. Moreover, the EED is shown to be more stable and almost independent of the local errors. This fact makes this filtering strategy more appropriated when filtering noisy surfaces.

NON-LINEAR DIFFUSION FILTER

MOTIVATION

MDT calls for filtering previous the SGC can be derived because of

(i) the omission error caused by d/o do not represented in the geoid, (ii) the signal-to-noise rate decreases for the higher degrees (shorter wavelengths).

Two criteria to stop the filter:

• OPT: optimum approximation to the Kuroshio Current as measured by drifter buoys in [30°N 40°N]x[125°E 155°E]. Allows us to investigate the capabilities of each filter to approximate a solution for the SGC, since the inner characteristic of a single filter could differ with each other and therefore the requirements to find the optimal filtering could also differ.

SGC are aligned along the gradients of the MDT

Anisotropic rather than isotropic filtering would be preferred!

Western Pacific Ocean.

Three major currents are

in black.

COM: common degree of filtering as a GF of 111 km of HWL in [20°N 30°N]x[170°E 190°E] that is a "free-of-currents area" (isotropic flow) and therefore all three filters should provide surfaces reflecting the same signals. Allows us to compare objectively the filters in their own nature.

RESULTS

Hard case:

140

140

(PW) method.

120

160

160

Fig. 4.2 Unfiltered MDT and

derived SGC: Point-wise

180

180

				Kuro	oshio		North		torial	Equat	orial Co	ounter			Table 2.	1 Estima	ated velo	ocities (c	m/s) for	location	is in
	Γ	LOC	1	2	3	4	5	6	7	8	9	10			the three	e major	currents	in the a	rea of st	udy (Fig.	. 2):
	ľ	DRIF	39,2	72	80,6	78,7	33,3	29,1	24	27	18,4	18,6	RMS							Easy ca	ase.
Facy caco	ľ	UNF	49,9	129,9	506,4	134,6	358,5	432,1	248,6	1155	1871	771,7	760								
Easy case.		COM	33,7	43,7	45,5	38,4	47,3	37,6	26,1	51,9	42,9	28,5	23								
	EED	OPT	40,6	58,8	64,9	49	54,9	36,2	27,9	61	51,2	35	20,8								
		COM	32,4	43,5	45	36,4	46,3	39,6	27	47,9	45,5	25,9	23,3								
	PMF	OPT	39,7	61,1	70,6	47,6	53,4	44,6	28,7	60,3	59,5	32,5	22	Fig	g. 5. 1 SC	GC deriv	ed form	a filtered	d SW M	DT in Fi	g. 4.1
0.6											a.	EED		b.	P	PMF		C.	EEC	D-PMF	
0.4	CO	M:								35		C.L.		35		C.L.		35			
5	•	differen	nces ari	se on th	ne strea	m flow	along	the K	С		1	Sec. 1			<u></u>				-		
120 140 160 180	•	the PM	IF prov	vide hig	gher va	lues th	an the	EED	on	≥ ²⁵		Second	No.	25	-	Sec. 1	- Martin	25			
m/s		the cres	st of the	e currer	nt					3 15		1.20		15		2.26	Sere in	15	1		205
SGG	•	the stream	am flow becomes wider by the EED								- - 1		ter is	graf se				SHE			
1.2	•	results	provide	provided by the EED, 19.3 cm/s, are better 5										5		2004		5		No.17	1. Co
$^{0.9}$ than those by a PMF, 21.1 cm/s										120	140	160	180	120	140	160	180	120	140	160	180
5 0.6	OP	Г·	-								d.			e.				f.			
0.3	•	only mi	inor dif	ference	es arise	at the e	astern	coast	of	35	7 🚚	100		35	1	2	Markey	35	× ::/:	6973	23
5		Ianan d	ue to a	severe	enhand	at the c	the cen	tral	01		1	A COLORA			9	Sec. St.			r de la	(1, 0)	
120 140 160 180		ridge by	v the P	MF	Cillian	mg or		i i ai		_ 25 🌈		CHE Y	See	25		SHOW	100	25	1.201	e di	
Fig. 4.1 Unfiltered MDT and	•	most of	the dif	fference	are n	ositive	correct	oondir	۱a (d 1 =	首位	# 1. C		15		1. P.C.		15	- 1 <u>1</u> 2		222
derived SGC: Spectral-wise		to high	er velo	cities fo	r the F	ED tha	n DME	Jonun	ig		1 1 1 1	griden.	-1.ers	19	and the	grafier		19		54.0	1.00
(SW) method.	•	the DM	E 22 3	om/s i		LD ma	tor the	n tha		5	n. 1981	200		5		- Ind	di ve	5	6.20		1 SE
	•	r r r r	1, 22.3		s a sing					120	140	160	180	120	140	160	180	120	140	160	180
		EED, 2	2.5 Cm	15										1							
										0	10 20	0 30	40 50	0	10 20) 30	40 50	-10-8	-6 -4 -2	024	681
											(cm/s			C	:m/s			cm.	S	

CONCLUSIONS

50 -10-8 -6 -4 -2 0 2 4 6 8 10 cm/s

The PMF does not control the diffusion direction but only the magnitude of the diffusion flux. The EED strategy is one step further than the PMF, forcing the filtering process not just by the size of the edges but also by the direction of the flow.

The main advantage of the EED is the relative low influence that the local errors have in the final results. Because the PMF just uses the nearest neighbours to filter a single location, errors at such neighbours are kept through the iterations leading to errors at the final surface. In contrast, the EED filters in the direction of the flow (determined from a regularized MDT) attenuating the individual errors influence.

The PMF is strongly sensitive to variations of k leading to very different solutions. Because the EED works on a regularized MDT, it provides similar results for a much wider range of values of k. This makes the **EED more robust**.

For a surface with low noise (easy case, SW MDT) both filters work fine finding similar results. However, when in cases with a strong presence of noise (hard case, PW MDT), the EED provided acceptable results while the PMF showed some problem with local errors throughout the entire grid.

The EED filtering strategy should clearly be preferred particularly in cases with a noisy signal, to both the PMF and the GF. Results provided by the EED were shown to be in closer agreement between both the easy and hard cases.

Comparing geodetic estimation of the surface velocities with those provided with buoys measurements we found a more or less good agreement at the KC and the NEC areas. Nevertheless, a strong discrepancy arises for the ECC where the in-situ data provide much smaller velocities than the satellite, probably due to the poor coverage of in-situ data in this zone.

COM:

- results by the EED, 23 cm/s, are better than the PMF, \geq 23.3 cm/s.
- similar results with some differences along the intersection between the Pacific and Philippine plates (see figure 2)
- OPT:
- results by the EED, 20.8 cm/s, are better than the PMF, 22 cm/s.
- the grid provided by the PMF is full of spots (figure 5.2e) which would make necessary to apply a higher degree of filtering for the case. This higher degree of filtering will also remove true signal in the stronger gradient areas leading to an attenuated estimation of the currents.

												011/20	
				Kur	oshio		Nort	h Equat	torial	Equat			
		LOC	1	2	3	4	5	6	7	8	9	10	
		DRIF	39,2	72	80,6	78,7	33,3	29,1	24	27	18,4	18,6	RM
		UNF	72,9	151,7	180,5	100	57,4	241,9	128,6	284,8	616	111,2	225
EE PM	EED	COM	42,2	61,5	76,1	52,9	40,3	36,1	26,2	52,4	50,8	51,9	19,3
	EED	OPT	45,7	71	92,6	58,4	45,2	41,9	25,1	60,2	60,2	54,6	22,5
		COM	44,5	100,2	94,3	57,4	40,9	39,1	26,5	51,7	51,1	52,5	21,1
	FIVIF	OPT	45,1	103,2	98,3	58,6	41,9	40,5	26,4	52,6	52,6	53,1	22,3

At those areas where the flow is relatively weak, the noise could be identified as signal by the EED influencing the determination of the direction by the filter and leading to fictitious results. Therefore deeper investigations are needed for the case.

REFERENCES

Perona P and Malik J (1990) Scale-Space and Edge Detection Using Anisotropic Diffusion. IEEE transactions on Pattern Analysis and Machine Intelligence, 12, pp. 629-639.

Bingham RJ (2010) Nonlinear anisotropic diffusive filtering applied to the ocean's mean dynamic topography. Remote Sens Lett, 1:4, 205-212. doi: 10.1080/01431161003743165

Weickert J (1998) Anisotropic Diffusion in Image Processing. BG Teubner Stuttgart.

Sanchez-Reales JM, Andersen OB and Vigo I (submitted) Improving Surface Geostrophic Current from a GOCE derived Mean Dynamic Topography using Edge Enhancing Diffusion filtering. J. Geodesy

Acknowledgements Work supported by the Research Projects AYA2009-07981 and CGL2010-12153-E funded by the Spanish Ministerio de Educacion y Ciencia.