

CryoSat-2 SAR Mode Over Ocean: One Year of Data Quality Assessment

F. Boy, N, Picot (CNES)

T. Moreau, S. Labroue (CLS)

Introduction

CNES has performed the reprocessing of one year of Cryosat-2 data using the Cryosat Processing Prototype (CPP):

- → Full LRM and SARM coverage (No SARin)
- → Period from May, 2012 to April, 2013
- → All surfaces (ocean, inland waters, ice sheets)
- → Level2 products are available: same NetCDF format than J2 GDR products and close content (SLA, SWH, Sigma0, Geo Corr...)
- → Those products are available on ftp server

The scope of this talk is to present the data quality assessment of CRYOSAT-2 SAR data over ocean. Here are the diagnostics performed:

- → Cross comparison with Jason-2 (analysis at crossover points)
- → Comparison between SAR and RDSAR (pseud-LRM) measurements
- → Analysis of LRM to SAR/RDSAR continuity
- → Spectral analysis

Few words about the processing

From FBR to Level2 for SARM and LRM

- LRM:

Processing inherited from Jason-2. MLE4 retracking using Brown model.

- SARM:

Use of a Doppler model built with a numerical approach (numerical computation of the radar echo shape).

The retracking is inherited from Jason-2 MLE3:

- Model derivatives are numerically computed
- Use of mispointing angle given by the StarTrackers as an input (required because of the Doppler echo model sensitivity to mispointing variation).

- RDSAR (pseudo-LRM):

Low resolution reference built from SAR measurements to calibrate this new mode. Processed as a LRM measurements.

Range Gates

91

RDSAR reference assessment

Xover points analysis between LRM/RDSAR and Jason-2: Sea Level Anomalies

- ☐ Very good agreement between CY2 and J2 SLA
- ☐ RDSAR provides SLA with the same accuracy than LRM compared to Jason-2 mission.

RDSAR reference assessment

Xover points analysis between LRM/RDSAR and Jason-2: SeaWaveHeight

- ☐ Very good agreement between CY2 LRM/RDSAR and J2 SWH
- ☐ RDSAR provides SWH with the same accuracy than LRM

RDSAR reference assessment

LRM to RDSAR continuity analysis:

Latitudes

- Very good LRM-RDSAR continuity
- Very good agreement between RDSAR and J2
- Good confidence in the RDSAR reference to calibrate SAR results.

Range differences

14927.082

are only about +/
1.5cm

0.030013099

3.4882461

SWH differences:

- ☐ 10 cm SWH differences in Pacific area
- ☐ Stronger SWH differences in North Atlantic (20cm)
- ☐ which dependencies?

Range Differences Dependencies Analysis:

Method: differences are sorted by SWH values (y-axis) and by radial velocity (x-axis/left) or roll angle (x-axis/right)

No radial velocity and roll angle dependencies

1%SWH dependency

SWH Differences Dependencies Analysis:

Method: differences are sorted by SWH values (x-axis) and radial velocity (y-axis/left) or crosstrack mispointing (y-axis/right)

No major radial velocity and roll angle dependencies

SWH dependency

SLA Spectral analysis

SLA SPECTRAL ANALYSIS:

- All spectra are superimposed for wavelength larger than 100 km. SARM processing is not affected by any error in the medium/large mesoscale band.
- A white noise plateau is visible on all spectra for wavelengths ranging from 600 m to approximately 3 km. The blue spectrum (Cryosat, pseudo-LRM) is largely higher than Jason-2 (sqrt3 as expected). The SAR spectrum (red) exhibits a white noise plateau lower than Jason-2's (by approximately 30%).
- For wavelengths ranging from 7 to 100 km: although the black (LRM) and blue (pseudo-LRM) spectra exhibit a spectral "bump", the red spectrum (SARM) does not

SARM provides with more trustworthy SLA dataset to observe scales ranging from 10 to 100km.

SAR and RDSAR Sigma0

■ SAR Mode (black) measures small scales signal, not seen by the conventional approach (red ie RDSAR)

Conclusion

- ☐ RDSAR measurements have been fully validated using Xover analysis with Jason-2 and also by analysing the LRM to RDSAR continuity.
- SARM clearly presents advantages regards to the conventional mode:
 - SARM SLA noise is 30% lower than in LRM
 - SARM provides with more trustworthy SLA dataset to observe scales ranging from 10 to 100km
 - SARM allows to catch small scales sigma0 features never seen by the conventional altimetry
- → « Observing Coastal dynamics with SAR Altimetry » by C. Dufau, CLS (today at 10:50)
- ☐ Yet a good continuity between SARM and CY2/J2 Low Resolution Mode.

For all those reasons, the user community asked for 100% SARM coverage on Sentinel-3 mission.

What do we need to take a step forward?

What do we need to keep on consolidating our knowledge of SAR techniques in preparation of Sentinel-3 and Jason-CS missions?

 Independent assessment from the scientist (deep ocean, coastal areas, inland waters). CPP SAR/LRM products are available on a ftp server. We need your feebacks!

ftp.cy2 sar l2.oceanobs.com (Contacts: N. Picot an F. Boy)

- A new mode mask on Cryosat-2 mission to look at new regions, high waves, ...
- Initiatives to estimate the Doppler Sea State Bias.
- Cross comparison between different processing techniques (SAMOSA, CPP, Halimi, others...). Planed in the on-going CP40 ESA project.

