Regional and Global CAL/VAL for Assembling a Climate Data Record Splinter summary

Chairs: P. Bonnefond, S. Desai, B. Haines, E. Leuiliette, N. Picot

Regional Calibration/Validation

Wednesday, October 9, 2013

6 oral presentations.4 poster presentations.

Local Cal/Val summary report

- Ensemble results from dedicated sites and regional campaigns indicate:
 - Current Jason-2 (GDR-D) SSH unbiased or slightly biased (questionable significance)
 - Current Jason-1 (GDR-C) SSH bias high by ~10 cm, but upcoming Poseidon-2 range corrections (altimeter internal path) expected to reduce bias to near zero.
 - Legacy (T/P) systems unbiased
 - First SARAL/AltiKa results support that altimeter measures slightly long (~5–6 cm).
- Unusual estimates of Jason-2 drift from dedicated sites warrant investigation
 - Significant (~5 mm/yr) with opposing signs at different sites
 - Raises questions on regional stability of altimetric measurements, but also on the stability of the in-situ observations (of water level and vertical land motion).
- Comparisons to ARGO and tide gauges providing valuable new insights on stability.

In-Situ Bias Estimates for Jason-1 and Jason-2

Global Calibration/Validation Wednesday, October 9, 2013

6 oral presentations.

11 poster presentations.

Global Cal/Val summary report

Jason-1 and Jason-2 Missions

- Jason-1 and Jason-2 data coverage and quality are excellent.
 - Sea surface height error < 4 cm for temporal scales less than 10 days.
 - GMSL comparisons to tide gauges < 0.3 mm/yr (with updated Jason-1 data)
- Jason-2 GDR version D reprocessing 100% complete.
 - Range bias reduced to < 1 cm, and time tag error eliminated.
 - Orbit accuracy < 1 cm.
 - Improvements to orbit accuracy (JPL orbit) reduce SSH crossover variance by ~40 mm².
- Jason-1 GDR currently available in GDR-C version only.
 - Potential range bias of 6 mm in geodetic mission relative to repeat-track mission.
 - Radiometer wet troposphere correction found to have increase in attitude dependent errors after Feb, 2013 safehold.
 - Recalibration applied to GDR products reduces these errors.
 - Numerous improvements to GDR-C products shown to improve quality of data and consistency with Jason-2:
 - Range bias due to error altimeter internal patch calibration.
 - Time tag error (transmit and receive time of echos)
 - Orbit (GDR-C to GDR-D standards), and weighting of DORIS stations in SAA.
 - Sea state bias model.
 - An end-of-mission dedicated recalibration of radiometer has started.

Global Cal/Val summary report

SARAL Mission

- Data quality meeting missions requirements.
- Excellent data coverage, slightly better than Jason-2.
 - Missing measurement due to rain is significantly less than anticipated.
- SSH crossover variance is similar to Jason-2 even with initial test GDRs.
- Range noise is lower than Jason-2.
- Range bias of ~ 6 cm.
- Improvements to initial data expected to provide additional improvements to quality of data products.
 - Sea state bias, radiometer wet troposphere correction, sigma0 atmospheric attenuation, wind speed, orbit.

Crysosat

Very promising in both LRM and SAR modes.

HY2A

More work required, especially to improve long-term stability.

Cal/Val round-table discussion

- Recommendations:
 - TOPEX reprocessing is high priority to benefit from 20-year record.
 - Cal/Val should be approached from multi-mission perspective.
 - Provides means to develop new standards for data products.
 - POD, retracking, sea state bias.
 - Further development of regional calibration techniques
 - Include other missions.
 - Expose errors impacting calibration of reference (Jason) missions.
 - Continue to develop approaches to improve long-term stability of radiometer wet troposphere delay measurements.
 - Significant source for limitations in long-term stability.
 - Concerted effort to characterize and reduce systematic in-situ errors.
 - Working group for in-situ measurements, and exchange of data.
 - Further investigation of potential altimetric sources for unusual Jason-2 drift estimates.