Status of GDR orbits for ocean topography missions and prospects for future improvements

L. Cerri, A. Couhert, S. Houry, F. Mercier

October 8th, 2013
Boulder (CO), USA

(1) CNES POD Team, Toulouse, France
Contents

- Evaluation of EIGEN6S2
- Improved processing strategies for Jason POD: TEST2013 orbits
- First SARAL POD results
Evaluation of EIGEN6S2

- Improved processing strategies for Jason POD: TEST2013 orbits
- First SARAL POD results
Progressive improvements in geopotential models and reference frame drive 10 year of changes in POD standards

- EIGEN6S2: GRACE data <=2012 and inter-annual TVG

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-tidal TVG: drifts in degree 2, 3, 4 zonal coeffs</td>
<td>Non-tidal TVG: drifts in degree 2, 3, 4 zonal coeffs</td>
<td>Non-tidal TVG: drifts in degree 2, 3, 4 zonal coeffs, C21/S21: Annual and semi-annual terms up to deg/ord 50</td>
<td>Non-tidal TVG: Annual, Semi-annual, and drifts up to deg/ord 50</td>
</tr>
<tr>
<td>Atmospheric gravity: only tides from Horwitz-Cowley model</td>
<td>Atmospheric gravity: 6hr NCEP pressure fields + tides from Horwitz-Cowley model</td>
<td>Atmospheric gravity: 6hr NCEP pressure fields + tides from Biancale-Bode model</td>
<td>Atmospheric gravity: 6hr NCEP pressure fields + tides from Biancale-Bode model</td>
</tr>
<tr>
<td>Pole Tide: solid Earth and ocean from IERS2003 conventions</td>
<td>Pole Tide: solid Earth and ocean from IERS2003 conventions</td>
<td>Pole Tide: solid Earth and ocean from IERS2003 conventions</td>
<td>Pole Tide: solid Earth and ocean from IERS2010 conventions</td>
</tr>
<tr>
<td>Third bodies: Sun, Moon, Venus, Mars and Jupiter</td>
</tr>
</tbody>
</table>

Next GDR (2014 ?)

EIGEN6-S2 (2013; proposed field for ITRF 2013)
Besides the periodic annual and seasonal components, this new field accounts for non-linear interannual variability with a piecewise linear model: bias and drift per year
Zero-drift extrapolation beyond 2012

EIGEN fields: result from cooperation between GFZ (GeoForschungsZentrum, Potsdam) and CNES/GRGS (Toulouse)
http://grs.obs-mip.fr/grace

EIGEN6S2 – Comparison to GRACE time-series
EIGEN6S2 – Comparison to GRACE time-series

Envisat - RMS of radial orbit difference

Cryosat - RMS of radial orbit difference
EIGEN6S2 – Impact on the rate of radial differences
(GDRD - EIGEN6S2)

- **JASON-2 (2009-2012)**
  Differences below 1 mm/year – impact is small, not sufficient to completely explain differences with respect to other groups

- **ENVISAT (2009-2012)**
  Differences exceed 2 mm/year close to the end of the mission
EIGEN6S2 – POE Post-fit SLR residuals
EIGEN6S2 – POE Post-fit SLR residuals
EIGEN6S2 - Conclusion

- EIGEN6-S2 allows a small improvement over the previous model (GDRD); better SLR fits and makes dynamic orbits closer to reduced dynamic orbits (see backups).

- Usually 2-3 years between successive POD standard definitions (mean model update): next GDR orbit release foreseen in 2014 (ITRF2013).

- If we can’t wait … observed errors induced on Jason are < 2 mm/yr on regional MSL trends and < 0.2 mm/year on global MSL trends, over 3 years (see also Couhert et al.). To mitigate this error:
  - **Dynamic orbits**: need a time series of Grace derived fields compatible with the latency of altimeter GDR products – Recommendation to GFO?
  - **Reduced dynamic orbits**: several options exists. At CNES we tried combining different approaches (Mascon for LEOs, C31/S31 for Jason, GPS based RD orbits). However, for better than 1 mm/year stability over <= 5 years time-span, using only tracking data from Jason, GPS-tracking seems necessary (is it sufficient?)
- Evaluation of EIGEN6S2

- Improved processing strategies for Jason POD: TEST2013 orbits

- First SARAL POD results
CNES TEST 2013 : improved processing strategies

- Need for a more stringent preprocessing of GPS measurements (see previous splinter summaries) → **30 sec processing** → reduced arc-length to avoid cumbersome calculations
  - 36-hour arcs every day (12 hours overlap)

- “Dynamic” step for DORIS, GPS and D+G : 1/rev Al. and Cross track per arc, 1 along-track constant every 6 hours

- Final “TEST2013” orbit: Dynamic D+G step, C31/S31 free to adjust, with 3-axis 1st order Markov process (sigma 1e-9 m/s², time constant : 900 s)

- Improved underlying models: EIGEN6S2, Atmospheric gravity from 3Hr ECMWF + full ocean response from T-UGOm2D, FES2012, Calibrated Semi-Empirical SRP model (Mercier and Cerri, OSTST 2013)
Closer to reference solutions of other groups

4 mm RMS wrt to JPL13A

5 mm

Small residual signatures from SRP modeling differences
Closer to reference solutions of other groups

**jpl13a – GDRD**

Cycles 001-176

**jpl13a – CNESTEST2013**

Cycles 001-176

**GSFC gsfc_ja2_poe_ld_std1204 – GDRD**

Cycles 001-176

**GSFC gsfc_ja2_poe_ld_std1204 – CNESTEST2013**

Cycles 001-176
Improved metrics: crossover variance

Each comparison is performed using common crossover points per cycle, only when nr points > 2800
Sensitivity of TEST2013 orbits to changes in gravity field

- Reduced dynamic approach: when TEST2013 orbits are computed with GDR-C gravity field (no drifts at all) instead of EIGEN6S2, impact on the orbit is negligible (RMS < 2mm, <0.5 mm/year).
TEST2013 orbits: conclusion

- TEST2013 reduced dynamic orbits are very close to JPL13a orbits
  - Both driven by GPS tracking
  - Average radial RMS ~ 4 mm
  - Geographically correlated rate of radial difference < 0.5 mm/year

- Orbit accuracy measured by crossover residuals is better on TEST2013 orbits than GDR-D (variance reduction of more than 20 mm^2)

- The dependency on the gravity field model underlying TEST2013 orbits is negligible

- However, differences between dynamic orbits (either DORIS or GPS-based) are still significant …
- Evaluation of EIGEN6S2
- Improved processing strategies for Jason POD: TEST2013 orbits
- First SARAL POD results
SARAL POE: SLR RESIDUALS ON DORIS-ONLY ORBITS

- **Radial accuracy** of DORIS-only orbits **better than 2 cm RMS** (SLR residuals > 70°) – Similar to other DGXX-based missions
- Significant error is observed in the horizontal plane (low elevation residuals)

- Cross-track bias of the orbits of about 5 cm; effect is common to Doris-only or SLR-only orbits: either a mismodeled cross-track force or CoM correction
- This effect is likely too large for SRP/TRR mismodeling only, given the satellite surface towards the sun
- No impact on the altimeter mission, but relevant for the IDS analysts
SARAL POE: SENSITIVITY TO GRAVITY FIELD ERRORS

All tracks

Ascending tracks

EIGEN-6S2 - GDRD

Descending tracks

EIGEN-6S2 + MASCON - GDRD

MASCON effect
DORIS allows to solve for local mass anomalies (mascons) to correct a given field.

(Cerri et al. doi: 10.1016/j.asr.2013.03.023)

Mascons wrt to GDRD, drifts removed (Envisat, Cryosat)

Mascons wrt to GDRD, drifts removed (Saral)

Mascons wrt to EIGEN6S2, drifts removed (Saral+Cryosat)
The radial accuracy of SARAL precise orbits is comparable to that of other DORIS-based altimeter missions.

The current estimate of the radial accuracy is better than 2 cm RMS, as measured by the core network SLR residuals at high elevations on DORIS only orbits.

The most significant contributor to the geographically correlated error is to the time varying gravity field; its contribution does not exceed 5 mm on average over the time interval covered by this analysis – TBC when GRACE time series become available.

A significant cross-track error is observed using either DORIS or SLR data. This could be due to an error along Z in a surface force model or in the center of mass Z-coordinate, or both. Given the amplitude of this error, it is unlikely that the cause is a surface force alone. No impact expected on altimeter data analysis – relevant issue for IDS.
Backups
Solar radiation pressure acts mostly as a bias perpendicular to the orbit plane.

In this configuration, atmospheric drag mismodelling errors significantly affect the along-track 1/rev empirical (noticeable signature of the ~25-day sun-rotation cycle).

A different behavior is observed before April 2013. Did anything change in the satellite configuration?
The systematic component in the 1/rev empiricals (constant + f(beta)) could be removed by calibration if a complete beta prime cycle (1 year) is available in stable configuration.

In conclusion, estimated empirical forces are small and comparable in amplitude to those of other missions.