

Splinter I – Precision Orbit Determination

Towards the 1 mm/y Stability of the Radial Orbit Error at Regional Scales

A. Couhert, L. Cerri, F. Mercier, S. Houry

October 8, 2013

Ocean Surface Topography Science Team Meeting Boulder, Colorado

- POD Radial Accuracy Achieved
- Tracking Measurement System Errors
- Terrestrial Reference Frame Effects on Orbit and MSL
- Time-Varying Gravity Field Modelling Errors
- Prospects for Orbit Accuracy Improvement

POD Radial Accuracy Achieved

The 1-cm RMS Orbit

 Comparison of GSFC (DORIS+SLR), JPL (GPS, reduced dynamic) and ESOC (GPS+DORIS+SLR) with CNES GDRD orbits

 High elevation (> 70 deg) SLR reference stations (7090Yarr, 7105Wash,7839Graz) residuals on the previous solutions

POD Radial Accuracy Achieved

Current POD Limitations

 Up to 9 mm regional biases observed on Jason-1 and Jason-2 orbits between independent POD groups

Bias amplitude geographic projection

Jason-2 GDRD - ESOC V4 radial differences (3.5-by-3.5 deg grids), cycles 2-162

Bias amplitude geographic projection

Jason-2 GDRD - JPL GPSR RLSE11A radial differences (3.5-by-3.5 deg grids), cycles 1-169

-7.2 -5.4 -3.6 -1.8 0.0 1.8 3.6 5.4 7.2 9. Bias amplitude geographic projection

POD Radial Accuracy Achieved

Current POD Limitations

How the radial orbit differences evolve over time?

=> Need of long-term stability of the radial orbit error at regional scales OSTST Boulder 2013, Couhert et al. at the 1 mm/y level for MSL estimates

Errors in the GPS Measurement System

Impact of the GPS Constellation

 RMS of radial differences between two Jason-2 GPS-based orbits using different GPS orbits and clock solutions, JPL and IGS

Stable radial differences well below 2 mm RMS

DORIS Ground Network and Receiver Stability

- High elevation SLR core network residuals on Jason-1 and Jason-2 independent DORIS-only solutions
 - The change from the primary to backup DORIS oscillator on Jason-1 removed ~5 mm of radial orbit error
 - » No conclusive correlation between the radial orbit accuracy and the size of the DORIS ground network

Errors in the SLR Measurement System

SLR Ground-Based Tracking Stability

• ~20 SLR stations routinely track the Jason-1 and Jason-2 satellites

Errors in the SLR Measurement System

Terrestrial Reference Frame Effects on Orbit and MSL

Global Scale

-5.0 + 2002

Jason-1 Radial mean

Date (year)

Terrestrial Reference Frame Effects on Orbit and MSL

Extreme Latitudes Regional Variability

Jason-1 and Jason-2 DL ITRF2008-ITRF2005 radial orbit drift

Jason-1 DL ITRF2008 - ITRF2005 radial differences (3.5-by-3.5 deg grids), cycles 1-330

Drift amplitude geographic projection

Overview

- Focus is on providing a long-term error budget of the 10-year Jason-1 and ENVISAT orbit time series at two time scales: interannual (2-5 years) and decadal (> 10 years)
 - + 10-day series of GRACE-derived gravity field are taken as a reference
 - Only DORIS-derived orbits are considered:
 - » To derive an upper-bound estimate of TVG errors
 - » To ease the interpretation of the results
- Jason-1 and Jason-2 GDRD orbits are then further evaluated through comparisons with external orbits, using different TVG modelling options

Global Impact on the Radial Orbit Accuracy < 5 mm RMS

 "U-shape" of radial differences between the GDRD solution (mean model) and GDRD orbits using the GRACE's 10-day solutions

Slightly different behaviour out of the adjustment period (2003-2010) of the gravity mean model

Impact on the Global Mean Sea Level

Long-term evolution

14

» $0.10 \pm 0.01 \text{ mm/y}$ for Jason-1, parabolic shape for ENVISAT (-0.03 ± 0.01 mm/y)

Impact at Regional Scales

=> Fitting a polynomial of degree 2 for ENVISAT and degree 1 for Jason-1 is enough to retrieve their long-term and interannual evolutions

Impact of Method on the Inference of Long-Term Geographically Correlated Errors

"along-track" (data sampled along-track for each orbital cycle) vs.
 "grid" (data binned in grid cells) drift estimates give comparable results

Jason-1 GDRD - GDRD GRACE's 10-day Solutions radial differences (3.5-by-3.5 deg grids), cycles 105-259

-2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 Drift amplitude geographic projection

-2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 Drift amolitude severaphic projection

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2. Drift amelitude geographic projection

17 OSTST Boulder 2013, Couhert et al.

Drift amplitude seographic p

Jason Orbit Sensitivity to C₃₁ and S₃₁ Gravity Coefficients

 Jason-1 RMS of radial differences between the GDRD solution (mean model) and GDRD orbits using the GRACE's 10-day solutions making C₃₁/

S₃₁ identical Jason-1 GDRD - GDRD_mod GRACE's 10-day Solutions radial differences (3.5-by-3.5 deg grids), cycles 21-509

+ The East-West patterns of high variability are just the effect of C_{31}/S_{31} differences

=> TVG effects on Jason orbit could be accommodated with the estimation of C_{31}/S_{31} coefficients in the orbit determination process?

Geographical Distribution of Radial Drifts Between Orbits Using Different TVG Modelling Options

• These drifts are mainly due to the recent evolution of the gravity field and may be accounted for C_{31}/S_{31} coefficients

=> Reducing drift to sub-mm/y level

-16 -12 -0.5 -0.4 0.0 E4 0.5 1.2 L6 2.0 Drift amplitude gaugesphic projection

Geographical Distribution of Radial Drifts Between Orbits Using Different TVG Modelling Options

These drifts seem to only be accounted for by estimation of C₃₁/S₃₁
 coefficients, no more by the use of the GRACE's local solutions
 Reducing drift to

sub-mm/y level

Geographical Distribution of Annual Terms Between Orbits Using Different TVG Modelling Options

• These annual terms seem to only be accounted for by estimation of C_{31}/S_{31} coefficients, not by

365-Day amplitude geographic projection

the use of the GRACE's 10-day solutions

=> Reducing annual terms to < 2 mm

365-Day amplitude geographic projection

Geographical Distribution of Annual Terms Between Orbits Using Different TVG Modelling Options

• Estimated amplitudes for Jason-2: East-West order-1 patterns < 4 mm

- These annual terms seem to only be accounted for by estimation of C₃₁/ Jason-2 GDRD - GDRD GRACE's 10-45 Solutions radial differences (35-by-35 deg grids), cycles 1-151
 S₃₁ coefficients, not by the use of the GRACE's
 - 10-day solutions

=> Reducing annual terms to < 2 mm

Does an Estimation of C_{31}/S_{31} Coefficients Improve the GDRD Orbit Accuracy?

w/o C_{31}/S_{31} estim. : drift 3.3 ± 0.5 mm/y, annual term 4.3 ± 1.4 mm w C_{31}/S_{31} estim. : drift 2.8 ± 0.5 mm/y, annual term 3.3 ± 1.4 mm Drift reduction of 0.5 mm/y, amplitude reduction of 1.0 mm

w/o C_{31}/S_{31} estim. : drift -2.4 ± 0.7 mm/y, annual term 5.1 ± 2.0 mm w C_{31}/S_{31} estim. : drift -2.0 ± 0.6 mm/y, annual term 3.8 ± 1.9 mm Drift reduction of 0.4 mm/y, amplitude reduction of 1.3 mm

C_{31}/S_{31} coefficients differ slightly when estimated from DORIS or GPS measurements

 A sub-mm/y level of drift between different orbit solutions can not be guaranteed when using DORIS measurements only

Drift amplitude geographic projection

 Short-term orbit errors are relatively stable over time and do not prevent radial orbit accuracy from reaching the 1-cm RMS goal

The estimation of C₃₁/S₃₁ coefficients in the orbit determination process enables the reduction of radial drifts between the GDRD solution and external orbit series to sub-mm/y level, over the span of the Jason-1 and Jason-2 missions...

... however, some unexplained discrepancies can be noted between these estimates and their 10-day Grace's solutions counterparts, and between the DORIS and GPS estimates if taken over a shortened period of time

 Estimates of GDRD orbits error budget (> 365-day) are summarized on the following slide

Estimates of GDRD Orbits Error Budget (> 365-day)

Error Source	Global	Regional
Tracking Systems (GPS, DORIS, SLR)	/	<u>Annual term:</u> SLR range biases oscillations from <i>3</i> to <i>9 mm</i> <u>Long-term evolution:</u> SLR range biases drift (5-10 years) < <i>2 mm/y</i>
Reference Frame	<u>Annual term:</u> North/South oscillations < 8 mm <u>Long-term evolution:</u> Z-drift (10 years) < 0.3 mm/y <u>GMSL long-term evolution:</u> Drifts (10 years) < 0.05 mm/y	Long-term evolution: - Jason2 (5 years) < 0.6 mm/y at extreme latitudes - Jason1 (10 years) < 0.3 mm/y at extreme latitudes
Time Variable Gravity (TVG)	<u>GMSL long-term evolution:</u> Jason-1 (10 years) < 0.10 mm/y <u>GMSL interannual variation:</u> - ENVISAT (5 years) < 0.15 mm/y - Jason-1 ~900-day variability < 0.10 mm	<u>Annual term:</u> East/West patterns < 4 mm <u>Long-term evolution:</u> East/West patterns < 2 mm/y <u>Interannual variations:</u> ENVISAT (5 years) < 3 mm/y