SWOT Mission Design for Advancing
Mesoscale Oceanography
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Mesoscale perspectives
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Targeting the dynamics of the
smallest scales of ocean currents
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SSH is needed for dynamics
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Power density

The limit of resolution of Jason-1/2
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« Drop in energy of 2-D gridded SSH spectrum
(blue) vs alongtrack spectrum (red) at 200 km
marks the mapping resolution with 2 altimeters.

e The ultimate resolution is limited to 70-100 km
due to the instrument noise.
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SWOT Payload Configuration
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SSH spectral slope in the global ocean
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Global mean SSH spectrum and the SWOT requirement
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SWOT SSH resolution in the global ocean

10°

10*

10*

10*

10"

10°

30

25

120

§ 15

0 50 100 150 200 250 300 350
Fu and Ublemann (2013)



Wet tropospheric correction

» Conventional nadir-looking one-beam radiometer is not sufficient for correcting the
cross-track variability of the range errors caused by the tropospheric water vapor.
* The two-dimensional swath measurement of SWOT needs a two-beam radiometer

for wet-tropospheric corrections.
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Need of a Nadir altimeter

The long-wavelength accuracy of the SSH
measurement is expected higher for the
altimeter than KaRlIn.

By combining the two measurements
simultaneously, a consistent measurement
from short (KaRIn) to long wavelengths
(altimeter) can be obtained.

Calibration and validation of SWQOT in setting
the standard for the next generation altimetry
missions to continue the climate data record
of sea level and improve its resolution and
coverage.




Time scales of ocean variability decrease with spatial scales
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Small-scale SSH signals de-correlate over 10 days
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Wavenumber spectrum of internal waves
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After removing the white noise
floor, the Jason SSH spectrum
seems consistent with internal
waves at wavelengths less than
100 km.



Orbit Requirements

» Global coverage and more frequent sampling dictates a compromise in orbit
repeat period of 21 days with 10-day subcycle.

* Inclination of 77 degrees to achieve non sun-synchronous orbit to minimize
tidal aliasing and to ensure coverage of major water bodies on land.

» 1 day repeat period during the initial cal/val phase for fast sampling to
achieve the cal/val objectives and study rapidly changing phenomena.
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Longitude crossings to be determined.

A SPURS-like experiment with AirSWOT.

A cal/val working group will be formed soon to address the various issues (cal/val
sites, in-situ observations, strategy for separation of signals and errors, etc.)



Conclusions

SWOT will provide the first opportunity to explore ocean dynamics with
wavelengths less than 100 km.

The mission is designed to achieve wavelength resolution of 15-25 km.
A two-beam radiometer is required to minimize errors from cross-track
variability of water vapor effects.

A conventional nadir altimeter is required to calibrate and validate
SWOT for maintaining consistency with existing data record.

The missions orbit is selected to optimize the global sampling of
eddies. (21 day repeat with 10-day subcycle)

Ageostrophic motions like internal waves might create challenges.

A 1-day repeat sampling phase for 90 days will provide an opportunity
to address high-frequency signals and its possible separation from low-
frequency signals.



Back-up



Mapping pattern of the 1-d versus 10-d orbits
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10d orbit fter 10 days 1d contingency orit after 10 days

- Quasi-global mapping every 10 days with the 10d orbit + global mapping every cycle (21 day)
- Only 1 Global mapping every cycle (21 days) with the 1d orbit

—> Large and intermediate mesoscale with decorrelation over 10 days: would highly benefit
from the 10-day sucycle (inter- gappy-swath mapping) of the 10d orbit. Clearly redundant
observations with the contingency orbit: strongly affects the performances of traditional
mapping of large and intermediate mesoscales

— But what about short mesoscales and submesoscales (intra-swath) who have a
decorrelation time below 10 days?



Simulation of a random2D field following the internal-wave
spectrum observed at 20S, 85N (from T. Farrar)
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