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Radiation pressure models

Radiation pressure models : current approach

construction of a refined radiation pressure model

precise geometry, materials characteristics
ray tracing method for incoming fluxes
diffuse emissions on radiators (thermal control), antenna radiation

simplified model for orbit determination
... for efficient computation of the surface forces
adjusted ‘box and wings’ models

or use of interpolation tables
use (if possible) the complete attitude definition,

including solar array pointing
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Geometry

0 : orbital angle (referenced to subsolar direction)
B : solar angle
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Radiation pressure models

Relevant parameters to accommodate SRP errors in orbit determination :

- Global scale coefficients of the solar radiation pressure model

- Partial update of few macromodel coefficients

- Empirical forces
1/rev along track and cross track, constant along track (or drag)
analysis of the empirical forces as functions of sun angle B : systematic signatures

Ccnes
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Empirical forces signatures, yaw steering cases

10-9ma-2 Tangential, cos and sin

Begin/End of Eclipse seasons

Jason-2 example, Along track (daily estimate of 1/rev)
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Correction of
atmospheric absorption/refraction effects ™ New eclipses model
Phase reference : subsolar point /

acceleration order of magnitude 2 10-9 ms?2 equivalent to 0.2 m? (total absorption) é
cnes
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Current ‘box and wings’ Jason model

Applied since GDR-C standards (with 0.97 scale coefficient for Jason-1)

AXIS m2 Normal direction Ks Kd Ka
X 1.65 1.0 0.09 0.28 0.21
-X 1.65 -1.0 0.43 0.21 0.01
Y 3.00 1.0 1.19 -0.01 -0.01
-Y 3.00 -1.0 1.20 -0.00 -0.00
Z 3.10 1.0 0.24 0.40 0.33
-Z 3.10 -1.0 0.32 0.37 0.27
+SA 9.80 1.0 0.34 0.01 0.65
-SA 9.80 -1.0 0.00 0.30 0.70

Remarks : +SA towards the sun (solar array)

adjusted on a precise model
(Ks+Kd+Ka not constrained on central part to have correct surfaces)

e
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Different attitude descriptions

|Ideal Yaw-steering attitude : Z satellite towards earth,
Y satellite orthogonal to sun direction (same as GPS)

Topex/Jason theoretical attitude : similar to the above yaw case, with limitations
on rates (important effect for small  values)

True attitude : close to the theoretical attitude
but : obtained by daily adjusted expressions
corresponding accelerations are not well represented by 1/rev empiricals

N Verify acceleration differences for these three models
IS it possible to use 1/rev, 2/rev .. in 6 terms to mitigate ?

Remark : [B|<15 ° fixed-yaw attitude , other definitions for the model
(this case is not detailed in the following slides) /
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Observed Jason 1 and 2 attitude

|
4 degrfes Yaw
Pitch
Roll
20 degles Solar array
l

Comparison of true and Jason theoretical attitude (Jason 1 and Jason 2 during tandem) ™

L. Cerri et al. Precision Orbit Determination Standards for the Jason Series of Altimeter Missions. MAR GEODESY.
OSTST 2013
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Example : accelerations, 3 ~80 °, solar array contribution

Impact of attitude law on solar array SRP acceleration

ms—2 Solar array only, true attitude (ref. thearetical vasw steeringy R,T,M
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Jason theoretical attitude — Ideal Yaw

R and T accelerations of 2.0 102 ms2 at frequencies close to orbital frequency

for complete attitude case, not correctly cancelled by 6 1/rev terms /
these T and R accelerations are due to transverse effects on the solar array i
(solar array is ~parallel to orbital plane for high 3 values) écnes
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ms—2
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Example : B ~80 °, central part contribution

Mo salar array, true attitude {ref. thearetical vaw steering) B, T,M
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Mo salar array, theoretical attitude {ref. thearetical vaw steering) B,T,M
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Similar effect, 10 times smaller than the solar array contribution
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Impact of attitude law on 6-plate central box SRP acceleration

True attitude — Ideal Yaw

by s

Jason theoretical attitude — Ideal Yaw

hours
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Example : B ~18 °, solar array contribution

Impact of attitude law on solar array SRP acceleration
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Jason theoretical attitude — Ideal Yaw

hhhhh

iImportant differences between ideal yaw, and Jason laws (true or theoretical)
with 1/rev terms and higher harmonics
also clear attitude jumps at updates /

Ccnes
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Example : B ~18 °, central part contribution

Impact of attitude law on 6-plate central box SRP acceleration

ms—2 Mo zalar array, true attitude (ref. thearetical vaw steering) R,T,M

True attitude — Ideal Yaw

-2 e -0 : : : . . : . hours
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Jason theoretical attitude — Ideal Yaw

215 2210 225 230 235 240 245 2510

Central part contribution 10 times smaller than solar array

1/rev term ~ 1.0 1019 ms2 , higher rank harmonics have little contribution to orbit error
Ccnes
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Models choice : solar array

A precise model is needed for the solar array accelerations

Standard plate model with Ks,Kd,Ka and exact pointing

must be used with the correct orientation (true attitude law)
optical coefficients must be updated for transverse behavior

(deviations with respect to the sun direction may reach 10 degrees)
tuned model represents also thermal radiation effects (diffuse emission)
must be representative up to 10 degrees mispointing

Sun

y

b oL

How to update in a simple way ?
Transverse diffuse and specular effects are not separable (o remains small)

simultaneous update of specular part and absorbed part /

total force is unchanged : 2*Ks+Ka = 0
Ccnes
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Models choice : central part

The central part may be empirically modeled (or corrected)

- attitude misrepresentation effects are much smaller than for the solar array
- a precise model is not possible (antennas, various shapes, shadows, thermal behavior)

Construction of a model in the sun-pointed frame (referred to as Rg)

- represents all radiation effects on the central part
including thermal radiation effects
- represents the difference between theoretical yaw attitude and true attitude

Rg frame : Xg,Yqg,Zg reference frame, assuming a perfect yaw attitude
Yg solar array rotation axis in the ideal yaw case
Zg towards the sun

This reference frame is used at IGS for GPS satellite empirical accelerations
for SRP modelling

OSTST 2013
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Theoretical yaw steering, Rg frame

View from the sun A X,

I,
] P
L/' - ZC Xg
v, 0

o p

I
Xg

T, B B I
I,
Subsolar point
Solar array reference frame : Rg

Zg axis towards the sun, main acceleration is along Zg axis
accelerations are periodic functions of 0 /

some interesting symmetries : for example, same accelerations on all axes for 8 =90 and -90 °
Ccnes

15 OSTST 2013



16

Characteristics of accelerations in Rg

X, Oscillation around Yg, amplitude depending on 3

h

B ‘

5 one orbit

4
A

Central body model, yaw attitude

- Yg acceleration is null

- Xg and Zg accelerations periodic, with harmonics

amplitudes vary with 3
- Zg : bias, cos(6) (small),

OSTST 2013
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functions of 3

/

Ccnes



17

Accelerations components in Rg
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BW model, with yaw reference attitude Complete model :
even terms only terms up to second harmonic
only terms in 6 and 26 have significant effects - null harmonics at p=90°
all harmonics are null at =90° polynomial B expression

variations in  can be represented with low degree polynomials
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Model definition, identification

Construction of the normal equations

- 1.5-day arcs, gps measurements

- reference solar array with complete attitude law , box=0

- 15 parameters

- specular and absorption coefficients for solar array

- empirical forces (inclusion in normal equations allows rapid quality check)

Cycles 61 to 87 (Jason 2)

Identification of polynomial coefficients aq + @ (u? — 1)+ 4au?(u? — 1)

_ £ °
(u= ﬂo:ﬂo corresponds to 90 °) ao =0 for periodic terms

A priori values from ‘BW’ model with theoretical yaw

5 adjusted components in Rg frame (subset of the 15 parameters)
Xg cosandsin, Zg constant, cos and sin

Adjusted solar array (2 coefficients)
Ccnes
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Effect of solar array correction

Initial model Initial model + GS correction

10-9 ms-2 ernpiricals Wrev (T cos, T sin, M oos, M sing 10-9 ms-2 ernpiricals Wrew (T cos, T sin, M cos, N sing

0 0 ey

-&0 -E0 -40 =20 1] 20 40 [=1] =] 100 -g0 -G0 =40 =20 1] 20 40 &0 g0 100
No sensitivity on the empirical accelerations during yaw steering
Important N effect in fixed yaw (transverse component relative to solar array) -

Solar array modifications : 06Ks -0.15 and o6Ka +0.3
Ccnes
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Model

Initial model + GS correction

10-9 ms-2

ernpiricals Wrev (T cos, T sin, M oos, M sing

=20 1] 20 40 &0 g0 ]

correction

Initial model + GS correction +
Harmonic model coefficients

0-9 ms-2
g

empiricals Wrey (T cos, T sin, N cos, M sind

6]
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s

—20 0 20 40 B0 a0

Central part empirical model adjustment

OSTST 2013
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Jason 1 updated model characteristics

Harmonic representation in Rg

- of GDR-C box o Updated model
: ;|
ol - Z cosoO
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a5 -5
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25 -25
20 -3
T deg s+ F 77— deg

The updated model remains close to the initial one
(z cst, z cos, x cos were adjusted without constraints)

The x and z sin contributions are small (symmetric satellite and sun-orientation)

/

The z cos term reflects a dissymmetry between Earth and anti-Earth faces-
Ccnes
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Jason 2 updated model characteristics

Harmonic representation in Rg
of GDR-C box w2 Updated model

u.sgﬁ u.s—i}\ Z coso

0.0 oo
i | X cos 0 ] j
054 -0.5
10 -1.0- X Ccos 0

R e @9 350 Y A & deg
Jason 2 and Jason 1 updated models are very similar
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Jason 2 POD performances (1)

Empirical 1/rev terms

_ Tangential axis (cos, sin)
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Systematic effects are fully removed
Model has identical performances outside the adjusted period
Different behavior at the beginning of life /

.
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Jason 2 POD performances (2)

rms R,T,N orbit differences, new model and current model
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Radial effect is between 3 and 5 mm, important for high  values
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Jason 2 POD performances (4)

effect of the radiation model update on radial orbit differences
main component is at 120 days

Amplitude of the 120-day signal in the radial orbit differences

Ascending Descending

118-day amplitude geographic projection
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Improvements

Small but systematic improvements on all metrics

OSTST 2013

Jason 2 POD performances (3)
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Conclusions for Jason

The solar array must be represented with the true pointing

- pointing errors relative to sun, up to 10 degrees

- empirical 1/rev terms cannot represent the difference between
true and theoretical pointing

- updated to have correct transverse accelerations

The central part can be modeled empirically

- pointing errors are smaller than for the solar array ... and surface as well!
- empirical model expressed as 6 harmonics in Rg frame

(angle relative to subsolar point, axes aligned to Sun and solar array)
- Simple polynomial representation in § for the harmonics coefficients

Updated model, using ~10 months of data, tested over mission lifespan

- new coefficients for solar array, to use with correct pointing
- empirical model for central part, expressed in Rg frame

Systematic improvement of the quality of the orbits

Ccnes
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Prospects

Other applications and developments

- Efficient SRP models are very important for Doris-only dynamic solutions (IDS)

- extension to other satellites ongoing, evidence of systematic signatures
in empirical accelerations (Cryosat, Saral, HY2A, ...)

OSTST 2013
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