

Bifrequency radiometer onboard AltiKa mission: issues and way of improving the retrieval

E. Obligis, B. Picard, ML. Frery, N. Picot

Context

Radiometers onboard altimetry missions

NASA/CNES/NOAA/Eumetsat missions

Topex-Poseidon/TMR
Jason-1/JMR
Jason-2/AMR

European missions ERS-1/MWR

ERS-2/MWR Envisat/MWR

S3/MWR

CNES/ISRO AltiKa

18 (18.7) GHz

Sea Surface

Altimeter wind $\sigma 0 \text{ Ku}, \sigma 0 \text{ Ka}$

21 (23.8) GHz

Water Vapor Content = dh

23.8 GHz

37 (34) GHz

Cloud Liquid Water content

36.5 (37) GHz

Retrieval algorithms for bifrequency radiometers

- ERS 1 & 2 algorithm (Eymard et al, 1996)
 dh= c0 + c1 ln (280. TB23.8) + c2 ln (280. TB36.5) + c3 (Ws -7.)
- Envisat & S3 algorithm (Obligis et al, 2006) dh= NN (TB23.8, TB36.5, σ 0 Ku)
- What about AltiKa?
 - => Formulation of radiometer algorithm similar to the Envisat ones

Inversion algorithm development

age 4

Simulated TB23.8, TB37 Sigma 0 Ku or Ka

Direct model MEAS=f(geoφ)

Inverse model geoφ=f(MEAS)

Radiative Transfer model

ECMWF analyses

2D surface: sst, wind 3D profiles:T,P, Wv, Wc

Computation of geoφ parameters

geoφ **parameters** column-integrated dh, Att, Wc, Wv

In-flight results

ECMWF – RADIOMETER dh (cm)

ALTIKA – cycle 1 (P1)

Envisat – cycle 75

- > Performances over measurements degraded with respect to the Envisat ones
- ➤ Additional analyses are required
- ➤ Algorithm formulated over simulations
- ➤ Consistency between simulations and measurements?

age 6

ALTIKA – Raw 23.8 GHz TBs – 4 months of collocated data

Bias=-3.1 K Stdev=2.8 K

Page 7

ALTIKA – Raw 37 GHz TBs – 4 months of collocated data

Bias=0.3 K Stdev=3.0 K

Page 9

- <u>For the brightness temperatures</u>, the agreement between measurements and simulations is not perfect but satisfactory, at the level of the one obtained with the Envisat mission
- <u>For sigma0 in Ka band</u>, necessity to better understand the discrepancies (mainly observed for high values = low wind speed)
 - Simulations: What is the ability of our emissivity model to simulate accurately the backscattering coefficient in Ka band for low and high winds?
 - Measurements: Sigma0 is not a direct measurement of the instrument. What is the accuracy of the estimation, what is the impact of the retracking?
 - Weak weight of the sigma0 in the retrieval algorithm: How to explain the observed impact on wet tropo correction?
- In parallel to these investigations, development of alternative L2 radiometer algorithm

Alternative retrieval algorithm?

- ERS 1 & 2 algorithm

 dh= c0 + c1 ln (280. TB23.8) + c2 ln (280. TB36.5) + c3 (WSalt -7.)
- Envisat algorithmdh= NN (TB23.8, TB36.5, σ0 Ku)
- First AltiKa algorithm

 dh= NN (TB23.8, TB37, σ0 Ka)

Not mature enough

What about a new AltiKa algorithm?

dh= NN (TB23.8, TB37, WS)

Building of the learning database dh=NN(TB23.8, TB37, sigma0Ka) => dh=NN(TB23.8, TB37, Ws)

Performances over simulations

- Over simulations, similar performances
- But over measurements?
- Algorithm applied with the <u>ECMWF wind speed</u>

Performances over measurements

ECMWF - RADIOMETER dh (cm)

Performances over measurements

Conclusions

- For the Altika mission, at that time, the quality of the radiometer wet tropospheric correction is not at the level of the Envisat one.
- This is mainly due to the fact that the sigma0 in Ka band, used in the retrieval algorithm, is poorly known:
 - No accurate emissivity model to simulate it
 - Quality of the sigma0 altimeter measurement to be assessed (dependency on retracking)
 - Especially in areas of low and high wind speed (inaccuracy of the model, poor representativity in the learning database)
- Development of a new algorithm based on wind speed to overcome these problems
 - Algorithm applied with the ECMWF wind speed
 - > Limitations: poor accuracy, low spatial and temporal resolution
 - But still improvements of the performances

Perspectives

- When available, use of altimeter wind speed instead of ECMWF wind speed in the new algorithm: should significantly improve the performances
- The potential of adding SST as an additional input (See Thao's talk) should be studied
- In parallel, improvements in our knowledge of the interactions between sea surface and electromagnetic waves in Ka band is necessary. This will allow realistic simulations and development of accurate algorithms
- Impact on the other radiometer parameters seems to be minor, but this has to be assessed

Atmospheric attenuation

- Retrieval algorithm similar to the wet tropo one Att_Ka=NN(TB23.8,TB37, sigma0Ka)
- Comparison with Lillibridge-Sharoo model attenuation:
 - After P1 adjustment no more bias between model and radiometer values
 - Model estimation is smoother than MWR one

