Quantify Errors and Uncertainties in Altimetry Data

Chairman: R.Scharoo, J. Dorandeu, M.Ablain

□ **Objectives:** Establish the link between Altimetry experts and applications (MSL, mesoscale, etc)

- New insights about errors in the altimeter system
- \Rightarrow From experts to applications
- User needs and requirements in terms of errors, including formalism of errors
- \Rightarrow From applications to experts
- Splinter divided into 3 parts :
- 1) Mea Sea Level applications
- 2) Ocean circulation & mesoscale
- 3) Analysis and formalism of errors

An issue raised at last OSTST was "to enhance the GMSL intercomparison between several groups in order to better understand GMSL differences" => 2 presentations to answer this question

- Henry et al. (oral) :
- ⇒ impact of methodology is significant: averaging, gridding, weighting
- ⇒ CU / AVISO, differences on the order of 0.1 mm/yr for the GMSL, and reach 0.3 mm/yr in tropical and high latitudes bands
- ⇒ binning for AVISO and weighting for CU are to be improved

Masters et al. (poster) : impact of altimeter standards is low on Jason-1/Jason-2 but remains significant on TOPEX (due to instabilities on altimeter parameter).

2) Ocean circulation & mesoscale

Dufau et al. : spatial spectral analysis of SSH to characterize small scales observability by intersect of slope and noise level

 \Rightarrow This study provides a map of SLA observation errors (instead of a constant value) for data assimilation systems

 \Rightarrow Ideally, should be estimated for each season to follow error (and slope?) temporal change.

OSTST | Boulder, Colorado, 8-11 October 2013

3) Analysis and formalism of errors

□ Thibaut et al: New insight of short wavelength error characterisation

 \Rightarrow Hump on all the LRM altimeter spectra (10-60+ km), not in along-track SARM \Rightarrow Due to the waveform contamination by the heterogeneity of the sea surface (depends on

□ Decontamination will require to revisit the editing of 20 Hz altimeter measurements potentially using wavelet analysis
⇒The challenge is to find a trade-off between data coverage and data quality which depends on application

□ O. Andersen et al., performed an exhaustive cross-comparison of several ocean tidal models in terms of performances

 \Rightarrow First time an assessment of tidal currents available from (selected) models performed by comparing against tidal velocities estimated from current meters located in the deep ocean and from acoustic tomography

□ G. Jacob et al, sampling errors in the decomposition of vertical modes from current meter data estimated using an eddy-resolving ocean circulation model with embedded tides

=> Few tidal current observations , tentative to estimate barotropic / barocilinic tidal velocities from current meters observations

 \Rightarrow The ability to estimate the barotropic velocity is affected by the number and distribution of the current meters and the internal tide variability

3) Analysis and formalism of errors

□ C. Ubelmann et al., have presented a new method to improve the characterisation of the high frequency errors separating the wavelengths

□ First attempts, and method to be tuned/improved
⇒Possibilities of doing regional analysis, providing maps of errors, ...

□ From last OSTST, improvements have been performed on the altimeter error characterization

 \Rightarrow Huge work to better understand the Global MSL differences between each group

- \Rightarrow New insights of the altimeter error at short wavelength scales (Hump)
- \Rightarrow Better characterization of orbit and geophysical corrections errors (tidal models, atmospheric corrections, wet troposphere corrections,...)
- \Rightarrow Improvement of the error formulation (separating wavelengths)

□ For the future (next OSTST):

 \Rightarrow To enhance the link with users, requirements about error characterization (e.g. : model assimilation)

 \Rightarrow to continue to characterize the altimetry errors depending on wavelengths and frequencies and to provide a synthetic error budget of altimetry data for each altimeter standards (e.g : wet tropo, instrumental processing,)

Estimates of GDRD Orbits Error Budget (> 365-day) by A. Couhert & L. Cerri (POD Splinter)

Error Source	Global	Regional
Tracking Systems (GPS, DORIS, SLR)	/	<u>Annual term:</u> SLR range biases oscillations from 3 to 9 mm <u>Long-term evolution:</u> SLR range biases drift (5-10 years) < 2 mm/y
Reference Frame	<u>Annual term:</u> North/South oscillations < 8 mm <u>Long-term evolution:</u> Z-drift (10 years) < 0.3 mm/y <u>GMSL long-term evolution:</u> Drifts (10 years) < 0.05 mm/y	Long-term evolution: - Jason2 (5 years) < 0.6 mm/y at extreme latitudes - Jason1 (10 years) < 0.3 mm/y at extreme latitudes
Time Variable Gravity (TVG)	<u>GMSL long-term evolution:</u> Jason-1 (10 years) < 0.10 mm/y <u>GMSL interannual variation:</u> - ENVISAT (5 years) < 0.15 mm/y - Jason-1 ~900-day variability < 0.10 mm	<u>Annual term:</u> East/West patterns < 4 mm <u>Long-term evolution:</u> East/West patterns < 2 mm/y <u>Interannual variations:</u> ENVISAT (5 years) < 3 mm/y

Agenda

- Applications:
 - MSL:
 - Leuliette et al. (canceled): What do errors between altimeters tell us about the length of the Jason-3/Jason-CS calibration phase?
 - Henry et al. : Effect of the processing methodology on satellite altimetry based global MSL rise over the Jason-1 operating period
 - Ablain et al. (Poster) : Why altimetry errors at climate scales are larger in the first decade (1993-202)?
 - Master et al. (Poster): Bumps and wiggles: making sense of Sea Level climate Record variability
 - Thao et al. (Poster): Assessment of long term errors of wet tropospheric corrections for altimetry missions: a Mean Sea Level issue
 - Ocean circulation, mesoscale:
 - **Dufau et al.** : Reducing altimetry small scale errors to access (sub) mesoscale dynamics: dream or reality?
 - **Richman, et al.** : Sampling errors in the decomposition of vertical modes from current meter data estimated using an eddy-resolving ocean circulation model with embedded tides
 - Hela et al. (Poster): Analysis of fine scale coastal process in the Gulf of Lion

Agenda

- Analysis and formalism of errors:
 - **Thibaut et al.** : Investigating short wavelength correlated errors on low resolution mode altimetry
 - **Ubelmann et al**. : Wavenumber spectrum of estimated uncertainty in Jason-2 sea surface height measurement
 - Stammer et al. : Accuracy Assessment of Global Ocean Tide Models
 - Carrere et al. (Poster): Comparisons to in situ data and estimation of errors in the Dynamic Atmospheric Correction
 - Garcia et al. (Poster) : Retracking Jason-1 Altimeter Waveforms for Marine Gravity Recovery
 - Scharffenberg et al. (Poster): Asymmetries between alongand across-track velocity spectra from tandem-mission altimetry