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Waveform Aliasing

 From SeaSat through Jason-CS, all altimeters
employ “full deramp” of a linear FM chirp

 Adiscrete Fourier transform (DFT) of the digitized
receiver output yields a time series of complex
amplitude coefficients, z,.

* The sampling rate of z, is correctly matched to the
chirp bandwidth, B, according to Nyquist-Shannon
sampling theorem.

e The waveform is the average of the power, which is
the squared magnitude of z,: p, = | z,| 2.

* Squaring doubles frequency, so z, should be
resampled before forming p, [Jensen, IEEE, 1999].



Y/ Squaring doubles frequency

If y(t) = COS(ZEﬁ) IS sampled at the Nyquist rate
Y, ={1,—1,1,—1,,,,} and then squared

[y‘,:]2 = {1, 1,1,1, } a wrong result is obtained.

Squaring -
doubles I:)’(t)]z = 5_1+COS(47rﬁ)]
frequency .
We must double the sampling rate
y,={1,0,-1,0,1,0,-1,0,...}
And then

squaring gets [y 1°=11,0,1,0,1,0,1,0,...

correct result.




Y/ Theory for bandwidth needed
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Jensen [1999] supposed
z, Is full-bandwidth (upper
rectangle), so p; fills the
lower triangle. We derive
the bandwidth expected
from a Gaussian rough
surface. A label such as 2
(1.3) means that curve is
for2 m SWH if B = 320
MHz (Ku band) or SWH =
1.3 mif B =500 MHZ (Ka
band). Aliasing should be
most significant at lower
values of SWH, and less
of a problem for AltiKa.




Y/ CryoSat FBR provide a test

CryoSat’s “FBR” data product provides N = 128
digitized receiver samples per echo, prior to the
DFT.
Conventional, 128-element waveform:
We simply form z, as a 128-element DFT of the
FBR, and then p, = |z,|°.
Double-sampled, 256-element waveform:
We extend the 128-element FBR data by
padding with 128 zeroes prior to doing a 256-
element DFT. This yields a 256-element z, and

p; = [z




s PLRM waveforms from FBR
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X7  PLRM from FBR (zoomed in)
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Conventional Double Sampled
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7/ We analyzed a 29-day cycle of ocean data =
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Conventional (black)
and double-sampled
(gray) standard
deviations in MLE3
retracker outputs at
20 Hz (top 3 panels),
& significance of the
variance reduction
(bottom). Range s.d.
reduced up to 5 mm;
SWH s.d. up to 9 cm.



X/ Cycle averages: 20-Hz change in mean (bias) -
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Conclusions

CS2 Baseline B for SAR was implemented because
resampling proved better for sea ice (specular echoes).

We find that resampling is also good for conventional LRM
altimeters when SWH is less than about 4 m. That is,
conventional waveforms are, in fact, aliased. Jensen
[IEEE, 1999] was correct.

Resampling prior to forming power yields variance
reductions of order 10% in range and 20% in SWH
estimates. Backscatter improvement is less dramatic.

Future altimeters should use resampling when computing
waveforms. (Even SAR altimeters do this to compute the
“tracking echo” used on-board for the AGC and target

tracking loops.)
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