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Introduction

« Can we reach small spatial scales (typ. less than 100 km) with conventional
altimetry in the along track direction ?

e What is the dominant error for small scale observation ? Can we reduce it ?
Which data should be used for science at these scales ?

1 Brief overview of different results obtained with altimetry
Conventional altimetry data are provided at a high rate in the products (20 measurements per
seconds for ERS, Envisat-RA2, Jason-1, Jason-2, LRM Cryosat-2, ...; 40 for Saral/altika ; 10 for
Topex)
 Outlooks to improve high resolution altimetry
O Insights and limits of Power Spectral Density analysis in this context
 Does delay/doppler SAR altimetry (Cryosat-2 and S-3) improves the
observation at these scales?
 Conclusions
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Jason-2 1Hz Sea Level Anomaly power spectral
density (PSD)
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0 SLA PSD decreases with wavenumber but the 3 cm Gaussian noise can corrupt
wavelengths as large as 100 km. This noise is the main limitation to observe small
mesoscale with 1Hz GDR along-track products.
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1Hz/20Hz Jason-2 SLA power spectral density (PSD)

1HZ/20Hz SLA POWER SPECTRUM
Jason -2 Cycle 35
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O A hump-shaped artifact appears on the spectrum but is visible only with 20Hz rate

g A \EO factor is not found between 20Hz and 1Hz noise level (3 cm instead of 1.8 cm)

=21 Hz noise is NOT ONLY instrumental noise !
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Comparison with simulated data

PSD of simulated SLA from Earth Simulator (P.Klein et al) + white noise
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The spectral hump is present on all conventional
altimeter PSD spectra

March 2011
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1Hz PSD energy as a function of SWH

True instrumental noise increases with the waves, but hump artifact does not.

SWH dependency dominates for 20 Hz noise and is still visible on 1 Hz
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Understanding the spectral hump with 20Hz data
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Hump is more present In regions where the backscattering properties are not —

homogeneous in the waveform footprint (basic assumption of the Brown model)
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Understanding the spectral hump with 20Hz data

Histogram of energy hump
(J2 global coverage)
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The distribution of the hump is
relatively random for large samples:

O the hump exists on all 21000 km
segments covering the globe albeit
with a variable amplitude (geographical
variations linked with occurrence of
rain and sigma bloom events)
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Is PSD the appropriate tool to determine the SLA content ?
Wavelet analysis looks very promising

O PSD, based on Fourier analysis (averaging of hundred of long segments - 500 to 1000
km ), is well designed for stationary signals

O But SSH/ SLA profiles cannot be considered as stationary signals
The backscattering surface is affected by rain, bloom events, modification of the sea state
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Processing and post-processing methods to reduce the hump
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AltiKa data

O Work needed on retracking algorithm (e.g. Sandwell & Smith 2013, 2-pass algorithm
used to mitigate the spectral hump for bathymetry applications). (50 years of altimetry data)
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Outlook: SAR-Mode technology

J What is observed on SARM o — Cryosat-2 (SARM, Tropical Pacific)
e Clean SSHA Spectrum — Jason-2 (Tropical Pacific)
dOWﬂ to 50 km — Cryosat-2 (PLRM, Tropical Pacific)
e Spatial limit (where erroris _ "
50% of the signal energy) s
might be closer to 30 km VS. £
70 km with LRM processing £ .2
O Different size and shape of
footprint (Circular 10 km / L e Wavelengthkm .
Rectangular 10 km * 300 m ) 10° 0 el 10°
avenumbper (CpKm
0 SARM synthetic footprint no SARM
longer smoothes along-track
error like LRM altimetry does. =
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Conclusions

U The spectral hump is not the resuit of a minority of outlier segments or sloppy processing
» Exists on data from all LRM altimeters from TOPEX to AltiKa, and all retrackers
» Long uncontaminated segments are very rare

» Phenomenon is more intense in zones of major rain and bloom events, but it is also present for
other ocean conditions (lower amplitude)

O Event triggered by surface heterogeneity (waveforms corrupted)

L Smarter post-processing & editing by end-users can mitigate the error
» Usage of 20 Hz is strongly recommended for small scale studies
» Work needed to develop better /smarter editing methods (lower artefact BUT good coverage)

1 Work needed on the retracking algorithms and/or waveform pre-processing

L SARM technology is promising (thin synthetic footprint) in small zones from Cryosat-2
but technology and processors are still young w.r.t the long LRM record

L Needed for further investigation:
» larger acquisitions from Sentinel-3
» concurrent LRM/SARM data from interleaved mode of Jason-CS
» SWOT/KaRIN images - to observe in 2D what nadir altimeters are integrating
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Thank you for your attention
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