

SARAL/AltiKa: A Ka band altimetric mission

Jacques Verron, LGGE, Grenoble
Pierre Sengenes and the CNES and CLS project teams
and Contributions from SARAL/AltiKa PI's

SARAL/AltiKa
 has been
 launched on 25
 Feb. 2013 from
 SHAR on PSLV20

First waveforms provided on Feb.

 GDR-T delivered to everyone early Sept. 2013

- History/Motivations
- The mission
- Science objectives/organisation

First Data

- Data availability/distribution
- Data quality assessment
- Insights at some preliminary applications

History: Some milestones of SARAL

- 1998-2002: Exploratory development
- 2003: Phase B (instrument)
- **2005:** Phase 0 (satellite): completed on 2 types of microsatellites (CNES & SSTL) approved by CNES (instrument)
- 2005: First discussions between CNES and ISRO: ALTIKA on-board OCEANSAT3
- February 2007: Signature of ALTIKA and ARGOS-3/SARAL MOU between CNES and ISRO
- August October 2009: Delivery of Doris, ARGOS-3 package and ALTIKA FMs to THALES AS-F PIM AIT
- End of 2009: formal agreement of EUMETSAT to take part to the SARAL mission
- January 2010 July 2011: Integration and Qualification of Payload Integrated Module in France
- **July 2012:** PIM delivery to ISAC/ISRO in India (Bangalore)
- August 2012 February 2013: Integration and Qualification of the SARAL S/C in ISRO facilities
- February 25th, 2013 at 12:31 UTC: Take-Off from SHAR

History: Some milestones of SARAL

- **1998-2002:** Exploratory development
- **2003:** Phase B (instrument)
- **2005:** Phase 0 (satellite): completed on 2 types of microsatellites (CNES & SSTL) approved by **CNES** (instrument)
- 2005: First discussions between CNES and ISRO: ALTIKA on-board OCEANSAT3
- February 2007: Signature of ALTIKA and ARGOS-3/SARAL MOU between CNES and ISRO
- August October 2009: Delivery of Doris, ARGOS-3 package and ALTIKA FMs to THALES AS-F PIM AIT
- **End of 2009 :** formal agreement of EUMETSAT to take part to the SARAL mission
- January 2010 July 2011: Integration and Qualification of Payload Integrated Module in France
- July 2012: PIM delivery to ISAC/ISRO in India (Bangalore)
- August 2012 February 2013: Integration and Qualification of the SARAL S/C in ISRO facilities

February 25th, 2013 On Monday, Oct. 7, precise historical **ENVISAT** orbit reached!

OST Virtual Constellation Status

Motivations

Necessity...

- Fill the gap after the 5 year ENVISAT mission and before JASON3 and Sentinel-3
- Complement the JASON-2 mission

Continuity...

- Technological maturity
- No experimentation in orbit required

Innovation....

- Number of technological improvements due to KA range
- Account for the post-GODAE and IGOS requirements on instrument performances (in particular for the coastal ocean), continuity, multimission needs, ...

- SARAL (Satellite with ARgos and ALtiKa), two independent missions (AltiKa and ARGOS-3) on-board the ISRO SSB platform
 - First altimeter in Ka band

SARAL mission lifetime requirement

- ARGOS-3/SARAL lifetime requirement: 5 years, objective: 7 years
- AltiKa/SARAL lifetime requirement: 3 years, objective: 5 years

SARAL/AltiKa satellite

- ISRO: SSB (Small Satellite Bus) platform, PSLV, command-control operations of the satellite.
- CNES: PIM (Payload Integrated Module)

SARAL/AltiKa ground segment

- ISRO is responsible for providing near-realtime and delayed-time altimetry products to Indian users
- CNES is responsible for OGDR and delayed products (GDR, IGDR, S-IGDR and S-GDR) to users outside
 India and to insure precise orbit control (DORIS and laser system data).
- CNES is responsible for the coordination of AltiKa with the other altimetry missions (e.g. DUACS) and the long term CalVal.
- EUMETSAT provides support to CNES for providing near-realtime products to users outside India

Orbit

- Sun-synchronous (6/18)
- 800 km
- 35 days
- 98.55°
- Same orbit/ground-track than ENVISAT (< Oct 2010)

AltiKa payload

- Single frequency Ka-band altimeter (35.75 GHz)
- Dual-frequency radiometer (23.8 and 37 GHz)
- DORIS receiver
- Passive laser retroflector array

Single frequency Ka band altimeter with an enhanced bandwidth

- Reduced ionosphere effects (authorizes mono-frequency altimeter)
- 480 MHz bandwidth : better vertical resolution
- Ka-band and increased PRF (4 KHz): improved spatial resolution and reduced 1Hz noise
- Smaller footprint
- Ka-band limitations : sensitivity to atmospheric water content

Orbit

- Sun-synchronous (6/18)
- 800 km
- 35 days
- 98.55°
- Same orbit/_{ENVISAT

AltiKa paylo

- Single freque (35.75 GHz)
- Dual-frequer37 GHz)
- DORIS receiv
- Passive laser

 Single frequency Ka band altimeter with an enhanced bandwidth

Daducad ignorphore affect

Ka vs. Ku

- Improved vertical resolution
- Smaller footprints
- Improved along-track resolution
- Shorter decorrelation times for sea echoes
- Better discrimination in transition zones
- Lesser ionospheric errors
- But sensitivity to small rains

Science

Scientific Objectives:

- Ocean mesoscale variability
- Coastal ocean altimetry
- Data assimilation and operational oceanography
- Continental waters, Ice sheet monitoring, Sea level change, Sea state, Low rain characterization, ...

Mission scientific group (France)

Active since 2002

International call of opportunites (2010)

- Total of 64 teams selected
 - 23 proposals from India
 - 16 proposals from France
 - 27 proposals from other internationals: USA (11), Europe (10), Australia (3), Taiwan (1), Japan (1), Brazil (1)
- Good coverage of the topics: CALVAL global & in situ, parameter analysis & reprocessing, coastal/regional altimetry & ocean dynamics, operational/model/assimilation, continental waters, ice, mean sea level, bathymetry, etc...

First Data

Data processing

- First OGDR processed by CNES on February, 26th early morning – just a few hours after launch
- First IGDR processed by CNES on March, 6th
- Automatic processing of OGDR at EUMETSAT and ISRO started on March, 19^{th.}
- Automatic processing of IGDR at CNES started on March, 19th
- Start of the GDR processing on July, 12th after the integration of Patch V1
- GDR_T open to all users, early September

Data processing

- First OGDR processed by CNES on February, 26th early morning – just a few hours after launch
- First IGDR processed by CNES on March, 6th
- Automatic process
 started on March
- Automatic proces
- Start of the GDR of Patch V1
- GDR_T open to a

Data Latency

Very quick availability of the data

jth

bn

Operational products (OGDR,
IGDR) generated and distributed
in a timely manner with a
comfortable margin

Data coverage

Over ocean surfaces the number of missing data is about 0.6 %, slightly above the JASON-2 (in routine JASON-2 is about 0.02%). Likely due to rain, but less impact than expected

Missing measurements
AltiKa Cycle 003 (23/05/2013 / 27/06/2013)

50

-50

200

100

Over land surfaces the SARAL data return exceeds the one of JASON-2 (3% of missing data for SARAL over all surfaces, 4.1% for JASON-2). Likely due to the smaller footprint.

Jason-2

Data coverage

Over ocean surfaces the number of missing data is about 0.6 %, slightly above the JASON-2 (in routine JASON-2 is about 0.02%). Likely due to rain, but less impact than expected

Over land surfaces the SARAL data return exceeds the one of JASON-2 (3% of missing data for SARAL over all surfaces, 4.1% for JASON-2). Likely due to the smaller footprint.

Jason-2

-20

-10

Data editing

More valid data than Jason-2 in the **Western Pacific**

(good behavior even in rain cell areas)

Comparison to Jason-2 (over the same period)

% of data valid on thresholds

0

10

20

Less valid data than Envisat

(in rain cell areas)

Comparison to Envisat (three years earlier)

Data editing

More valid data than Jason-2 in the Western Pacific

Less valid data than Envisat

(in rain cell areas)

Comparison to (over the same % of data valid on 0 100 200 AltiKa - Jason 2

-10

0

10

-20

Ka vs. Rain

20

- Less impact of rain than expected:
 2.6 % data edited over the 4 first cycles
- The initial figure (based on conservative hypothesis and system margins) was 5-10% of data

-20

-10

0

10

20

AltiKa performances: noise levels

Altimeter parameter	Specifications	Measured on ground	In flight data
1 Hz range	1.5 cm	0.9 cm	0.9 cm
1Hz SWH	6.3 cm	5.7 cm	5 cm
1 Hz Sigma0	0.2 dB*	N/A	0.012 dB

For 1s average, 2 m SWH, 7.8 dB Sigma0

AltiKa vs Jason-1/2:

• Saral: 5.1 cm \rightarrow 0.8 cms at 1Hz

• JA2/JA1: 7.2 cm → 1.6 cms at 1Hz

(At SWH=2m, range_rms (40Hz for Saral, 20 Hz for JA2/JA1)

^{*} Includes the noise and the non-calibrated drift error

SLA Spectrum analysis

The SLA spectrum is similar to Jason-2:

- 40Hz AltiKa SLA noise
 20Hz Jason-2
- SLA noise spectral hump is still present on AltiKa but shifted to shorter scales (smaller footprint)

HR Noise:

7.2 cm @ 20Hz

5.1 cm @ 40Hz

SLA Spectrum analysis

Can be compared to CryoSat SAR (processed by CNES over the Pacific zone)

AltiKa a=-1.74760338595 b=-5.04056312331 sigma=0.0547907661112

Sea Level Anomalies

Maps of SLA are very similar for Saral and Jason-2, with Rms values as low as Jason-2 mission

SLA Mean	AltiKa	Jason-2	AltiKa -Jason-2
cm	-2.8	3.2	-6.5

AltiKa 6.5 cm below Jason-2 (SSB, ? ...)

Sea Level Anomalies

Maps of SLA are very similar for Saral and Jason-2, with Rms values as low as Jason-2 mission

Performances analysis: Crossover

- Multi-mission crossover:
 - The mean at Jason-2/SARAL crossovers is already very low
 - Will be improved in the coming months by the improvement of the orbit estimation accuracy, SSB, radiometer wet tropospheric correction, ...

Performances analysis: Crossover

- Multi-mission crossover:
 - The mean at Jason-2/SARAL crossovers is already very low
 - Will be improved in the coming months by the improvement of the orbit estimation accuracy. SSB. radiometer wet tropospheric correction. ...

Insights on some preliminary applications

Absolute Altimeter Calibration in Corsica

P. Bonnefond, FOAM team, Géoazur, Sophia-Antipolis

Independent instruments:

- From tide gauge (coastal)
- From GPS measurement (offshore)

Refined Geoid near the coast:

- No land contamination seen in the waveforms, Good 40Hz data up to 3 km from coast
- Global standard deviation very low (28 mm) compared to JASON-2 (50-60 mm)

Absolute SSH bias derived from GPS:

- -67 mm (JASON-2: 0 mm)
- ⇒ Comparable to relative bias from global Calval analysis:

SARAL - JASON-2 = -65mm

Stability of the absolute SSH bias:

14 mm (JASON-2: 35 mm)

Altika in DUACS

Y. Faugere, A Delepoulle, F.Briol, I Pujol and DUACS Team, N Picot, E Bronner

- SARAL/Altika has been integrated in Duacs on July 1st with an unexpected handover with JASON-1
- Duacs quality control confirms good performances of Altika
- Allows to maintain good quality products despite the loss of Jason-1

Standard deviation of [J2/C2/AI – J2/C2 maps] on July (cm)

High energy in the Gulf Stream (Impact > 20cm))

More variability over 66°

Coastal structures (or error) captured with new sampling

SSALTO DUACS

Altika in DUACS

Y. Faugere, A Delepoulle, F.Briol, I Pujol and DUACS Team, N Picot, E Bronner

Comparison between DUACS Absolute Dynamic Topography (contours) to SST (color) on the Gulf Of Mexico on July 26

- The mesoscale is better resolved with Altika (3 satellites) with a better positioning of the eddies.
- First results highlights the potential interest of Altika to even improve the resolution of Duacs products

D. Griffin, M. Cahill, CSIRO Marine and Atmospheric Research

- Real-time oceanography needs 3-4 good altimeters
- Loss of Jason-1 left only Jason-2 and Cryosat-2. Fortunately, the SARAL project team had just announced that AltiKa data would be released
- Australia did not hesitate to include the data in our real-time systems
- Our routine data-editing procedures did not need modification. Raininduced errors are rarer than anticipated

- The quality of SARAL data, and speed of delivery post-launch, exceeds expectations
- SARAL was the first altimeter to discover a major cyclonic eddy off eastern Australia, and tracked its progress towards the Australian coast
- Cryosat-2's sampling pattern provided dense sampling of the eddy – but for a few days only

L. Aouf, J. M. Lefèvre, Météo-France, Toulouse

Validation with Jason 1 & 2 METEO FRANCE

NOASSI: without assimilation

ASSI-SRL: assimilation of SARAL/Altika

ASSI-SRL-JA2: assimilation of SARAL and Jason-2

OPER: Operational MFWAM with assimilation of Jason-1 & 2

- Positive impact on the wave analysis and forecast: ready to be used operationnaly in MFWAM
- Use of Saral with Jason-2 showed promising results (SWH errors are greatly reduced SI < 9% in the tropics)
- Work is in progress for the use of Saral/Altika in regional model MFWAM-Réunion (0.25°): watch on next cyclonic season!

Monitoring the SARAL/AltiKa Performance in the Global Ocean Forecast System

J. Richman and G. Jacobs, Oceanography Division, Naval Research Laboratory

- AltiKa is providing valuable information to the realtime global and regional forecast models
- AltiKa is performing as good as Jason-2
- The addition of a second altimeter has a significant impact on the forecast skill of the model.
- The short latency of AltiKa allows us to shorten our hindcast cycle
- Realtime monitoring shows stable statistics for noise

F. Birol, F. Niño, C. Delebecque, S. Fleury, R. Morrow, CTOH/ LEGOS, Toulouse

- Very good complementarity between Jason-2/AltiKa data
- AltiKa significantly improves the observation of the coastal dynamics
- Along-track spatial resolution at least as good as Jason-2 one (even slightly better because better signal-to-noise ratio)
- Good performance near the coast

Altika over the Antarctica Ice Sheet and first steps to understand Ka measurements on Ice

F. Rémy, D. Blumstein, A. Michel, T. Flament, LEGOS, Toulouse

- Altika very good on snow surface and ice (even some new results)
- Large backscatter sensitivity in space over ice and snow, due to interaction between small wavelength and surface ice grain, snow metamorphism, surface roughness, wetness, thin snow layer on ice... (need a dedicated electromagnetical model)
- The smaller penetration leads to a greater sensitivity to surface and subsurface echoes and thus leads to larger temporal fluctuations (need to explore this for climate survey)

SARAL/AltiKa altimetry over rivers

S. Calmant, LEGOS, J. Santos da Silva, UEA, D. Medeiros Moreira, CPRM, D. Blumstein, LEGOS, F. Seyler, Espace

- **Rio Pardo**
- Rms Error: 17 cm SARAL 25 cm ENVISAT 40 cm ERS2

- AltiKa performs better than ENVISAT over rivers
- All the ENVISAT series can be extended
- Altika could become a new reference if
 - Stable groundtrack
 - Long duration (AltiKa-2!)
- Major new feature : NRT

J. Tournadre, LOS, IFREMER, Brest

detected icebergs and ships Altika Cycles 2-5

Conclusions

System

- Excellent cooperation ISRO-CNES
- All components of the SARAL/AltiKa system are working properly
- Excellent stability of instruments so far

Data

Availability

in sankrit सरल saral means easy

- Easy!
- Very high availability of data despite the feared effects of rain
- Fast GDR distribution

Quality

- All products data quality are inline with mission requirements
- Similar to JASON-2 and sometimes better

On going actions (CNES PEACHI):

- To further improve processing algorithms, including computation of SSB table, ice retracking algorithm, ...
- Some algorithms are still to be tuned: neural network used for radiometer data ground processing, Sea State Bias computation, altimeter wind speed and ICE2 retracking

First look from science Pl's

- Some enthousiasm for these new/good data ...
- Easy to fit in operational systems
- Improved (mesoscale) resolution in the open ocean: new opportunities
- Improved access to the coastal ocean
- Beyond the improved resolution, also new openings for ice sheet and continental waters

AltiKa and future directions

- Ka band innovations may bring some opportunities to understand Ku better
- A step towards improved resolution ... and preparation for SWOT
- The new frontiers of altimetry are going to be open even more widely: coastal oceanography, cryosphere, hydrology, ...

