Comparison of Retrieval Algorithms for the Wet Tropospheric Path Delay
Introduction

Objective :

• Theoretical evaluation of current regression algorithms for the retrieval of the wet tropospheric path delay (dh) :
 • How different are the operational algorithms ?
 • Can we improve those algorithms ?

Outline :

• The wet tropospheric correction
• Algorithms currently used in altimetry missions
• Comparison of two algorithms: log-linear vs neural network
• Correlation analysis of inputs
• Conclusion
The wet tropospheric path delay

- Corresponds to path delay in the radar return signal due to water vapor in the troposphere
- Ranges from 0 to 50 cm.
- Any error in the wet-tropospheric correction directly impacts the sea level determination
- Calculated from radiometer measurements with uncertainty of around 1-cm rms (Ruf et al. 1994)
The wet tropospheric path delay retrieval

- Microwave radiometers measure brightness temperature (natural emission of sea surface and atmosphere)

- tb measured at a given frequency depends on the atmospheric profile and on sea surface conditions

- 3 tbs usually used around:
 - tb_{24GHz}: highly sensitive to water vapor (wv)
 - tb_{37GHz}: sensitive to clouds (wc)
 - tb_{18GHz}: sensitive to the surface: temperature (ts) and roughness.

- Relationship between dh and tb is established through statistical regression
Two families of retrieval algorithms

NASA/CNES/NOAA/Eumetsat:
TOPEX/JASON1/JASON2
• RTM
• Radiosondes and Radiometers
• tb18.7, tb23.8, tb34
• Two-step log-linear regression

Keihm et al. 1995

ESA (+CNES/ISRO ALTIKA):
ERS1/ERS2/ENVISAT/SENTINEL3
• RTM
• ECMWF Fields
• wspd/sigKu, tb23.8, tb36.5
• Neural Network

Eymard et al. 1996/Obligis et al. 2006
Comparison of 2 Algorithms

2012 ECMWF fields + UCL RTM:
20% for learning and 80% for testing

JMR_Reg
Two-step log-linear regression
tb18.7 + tb23.8 + tb34

MWR_NN
Neural Network
sigKu + tb23.8 + tb34

OSTST Meeting, Boulder, October 2013
Results on the test database

JMR_REG

\[\text{RMS} = 4.34 \text{ mm} \]

MWR_NN

\[\text{RMS} = 4.45 \text{ mm} \]
A third Algorithm

2012 ECMWF fields + UCL RTM:

20% for learning and 80% for testing

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Methodology</th>
<th>Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>JMR_Reg</td>
<td>Two-step log-linear regression</td>
<td>$tb_{18.7} + tb_{23.8} + tb_{34}$</td>
</tr>
<tr>
<td>JMR_NN</td>
<td>Neural Network</td>
<td>$tb_{18.7} + tb_{23.8} + tb_{34}$</td>
</tr>
<tr>
<td>MWR_NN</td>
<td>Neural Network</td>
<td>$sigKu + tb_{23.8} + tb_{34}$</td>
</tr>
</tbody>
</table>
Results on the test database

JMR_NN

RMS = 2.46 mm
Results on the test database

JMR_REG

RMS = 4.34 mm

JMR_NN

RMS = 2.46 mm

TWO STEP LOG-LINEAR REGRESSION VS NEURAL NETWORK:

- dh-dependent bias for JMR_REG
- The two step log-linear regression lacks flexibility to correctly adjust the data compared to neural networks
Results on the test database

SIGKU VS TB18.7:

- sigKu and tb18.7 do not bring equivalent information on the surface

- Use of tb18.7 gives much better performances
Importance of inputs

NN Input Relative Importance : HVS Criteria (YACOUB & BENNANI Y, 1997)

- sigKu is of little importance, compared to tb23.8 and tb34 for the retrieval of dh
- tb18.7 relative importance is much higher than sigKu relative importance
Principal component analysis

- Applied to ts, windsp, wc, wv and dh.
- Best summary of correlation between variables
- Each variable is represented by a vector
- Correlation between two variables is given by cosines of the angle between the two vectors
PCA: Brightness Temperatures

- \(tb_{18.7}, tb_{23.8} \) are highly correlated to \(dh \) and \(wv \) \((cor > 0.90)\).
- \(tb_{23.8} \) is the most correlated to \(dh \), \(wv \) and \(ts \).
- \(tb_{34} \) is the most affected by \(wc \).
PCA: Backscattering coefficients

- sigC and SiKu are highly correlated with windsp:
 \[\text{cor}(\text{sigKu}, \text{windsp}) = -0.99, \]
 \[\text{cor}(\text{sigC}, \text{windsp}) = -0.93 \]

- Little correlations are found with dh, wv and tbs (cor < 0.30)
PCA : Conclusions

- sigKu is closer to windsp and lacks information about ts and dh
- tb18.7 is closer to ts and dh
- MWR_NN lacks information about ts?
Last Comparisons

<table>
<thead>
<tr>
<th>Model</th>
<th>Condition</th>
<th>RMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>MWR_NN</td>
<td>sigKu+tb23.8+tb37</td>
<td>4.45 mm</td>
</tr>
<tr>
<td></td>
<td>RMS = 4.45 mm</td>
<td></td>
</tr>
<tr>
<td>JMR_NN</td>
<td>tb18.7+tb23.8+tb37</td>
<td>2.46 mm</td>
</tr>
<tr>
<td></td>
<td>RMS = 2.46 mm</td>
<td></td>
</tr>
<tr>
<td>MWR_NN+ts</td>
<td>ts+sigKu+tb23.8+tb37</td>
<td>2.21 mm</td>
</tr>
<tr>
<td></td>
<td>RMS = 2.21 mm</td>
<td></td>
</tr>
</tbody>
</table>
Conclusions

• Only an assessment of the regression quality on a given simulated database and not of the entire radiometric error budget (regression quality, database representativeness, RTM quality, instrumental noise, pixel heterogeneity, antenna pattern...)

 BUT SUCH ANALYSIS HELPS:

• Finding an appropriate method of regression:

 – **NN are more flexible than log-linear regressions.** NN are black-boxes but tools are being developed to make them more transparent.

• Identifying useful sources of information to improve the retrieval:

 – **sigKu** lacks correlation with dh and ts but **provide useful information on windsp** with respect to tb18.7

 – tb18.7 is more important than sigKu in the retrieval of dh : tb18.7 provides additional information on dh and ts => **3-channel radiometers should be preferred**

 – **Lack of 18.7 GHz channel can be compensated by ts for equivalent results.** Reynolds SST could probably be used for near real time dh products

• All these results should be assessed on real measurements using usual metrics (SSH variance at crossovers, radiosonde comparisons...)