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m B Low-frequency intrinsic varlablllty of Sea Surface Helght
In the global turbulent ocean: spatio-temporal scales
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Our focus: low-frequency oceanic intrinsic variability ‘
The ocean spontaneously generates 1-10 year variability under repeated
seasonal forcing. This variability may be strong but is still poorly-known.

Our non-linear oceanic laboratory:
Forced Global Ocean Model (NEMO code), 1/4° resolution, same as [4]

Intrinsic contribution ¢%/c3
Sea Surface Height

Experiment T-experiment l-experiment

Forcing Full range atmospheric Repeated seasonal cycle
timescales (reanalysis)

Objectives |Hindcast the "total" observed |lsolate the low-frequency
variability Intrinsic variability

Why ?
The strongly non-linear ocean dynamics may generate sub-harmonics (long space and
time scales) given a forcing restricted to annual and shorter timescales
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Total = Forced + Intrinsic

Two approaches to study it:
a) Academic process-oriented studies:
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* \What is the contribution of low-frequency intrinsic variability in a realistic ocean ?
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Constant wind forcing - Intrinsic variability has imprint on: * Do we observe similarities with idealized studies (e.g. modes of variability)?
Atmosphere : > Western Bounary Currents (WBCs) » May intrinsic variability imprint on atmospheric and climate variability 7
Ocean il — | and gyre systems [1] w A -~

When the Reynolds number M_ode waters reservoirs [2]
is sufficiently large > Circumpolar current [3]

Decomposition in space and time: | T
1) Removal of spatial and temporal mean and deseasonalization ., 1 |
2) Non-linear detrending (LOESS, cut-off 20 years) 18 m
3) Band-pass Filtering in time and space

(temporal cut-off 1.5 year, spatial cut-offs 12° and 6°)

Resolving mesoscale eddies

b) Eddy-resolving Ocean General Circulation Models (our approach):
> Comparison with observations (e.g. Global ocean [4], Kuroshio Extension [5])
> [4] showed there is no intrinsic variability in laminar ocean models
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Low-Frequency SSH variance: Small Scales |-~ i Low-Frequency SSH/SST variance: Large Scales -~

A)Low-Frequency Large-Scale variance driven by the atmosphere ove:'o mc;st
regions

Low-Frequency Small-Scale variance is mostly driven by oceanic internal processes
— The global average variance in the I-experiment accounts for 88 % of the variance in the T-experiment

B)But there are three intrinsic large-variance regions at Large Scales:

Intrinsic Low-Frequency/Small Scales varlablllty c;° Total Low-Frequency/Small Scales varlabliity oS3 > Gulf Stream ( O fS )2
. o Sea Surface Height Sea Surface Height > Kuroshio = I > 50 %
Observation: - > Antarctic Circumpolar Current (O‘ )
LF SS variance is small at low 60N T
latitudes 2 Q2 2
30N - SSH Intrinsic contribution o}° /o%° SST Intrinsic contribution o5 /c+°
Why ? \ b &0 Sea Surface Height Sea Surface Temperature
More linear processes TN o
Larger Rossby radii R * £ o=
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Sea Surface Height

Observation:
Regions where LF SS variance is large in the
|-experiment and in the T-expriment are colocated

90N

Observation:

Regions where LF SS variance
Is large are colocated with eddy-
active regions (HF SS)
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@: maximum standard deviation
Since air/sea interactions are important in these regions (e.g. largest values of Q

generate substantial decadal climate variability [6]
— Potential imprint of LS oceanic intrinsic variability on atmospheric and climate
variability in a coupled mode

Conclusions:

The atmosphere has small influence on
Question: k. P N - ' | | oceanic LF SS variance, which might be
How LF SSH variance is 305 | & T S - L= \(- | linked to LF mesoscale actvity

linked to HF eddy activity ? ' \ : :
(see KE cascades in box 4)

), WBCs might

NET
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This map is related to mesoscale activity with HF SS structures
— WBCs and ACC are eddy-active regions

Two paradigms: Current and upcoming work: W

Mesoscale
eddies

» Structure of low-frequency intrinsic variability in WBCs
(EOFs, comparison with SSH modes found in idealized
studies)

>
Mean state Low-frequency 1 yr W

Eddy forcing:
 Rectification of the low-frequency modes by eddy PV fluxes [1][8]
» Spatial and temporal inverse cascades of Kinetic Energy [7]

— Need statistical description of turbulent processes

* Impact of a finer resolution (1/4° vs 1/12°)

Diagnostics of spatio-temporal inverse cascade in the I-
experiment through fluxes of Kinetic Energy in spectral
domain (collaboration with B. Arbic [7])

Transitions between large-scale equilibria:
* The mean state of the ocean directly feeds low-frequency modes[2]
* Dynamical System Theory applied in academic context shows

random transitions between multiple stable states [9]

* Ensemble simulations are coming... (OCCIPUT project)
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