

Effective Rain-Flagging

Graham Quartly

Plymouth Marine Laboratory

What do we want?

How will we know we've got it?

Ideal flag

Not necessarily whole of rain cell / sigma0 bloom

Implementable with "standard" parameters

1 Hz

Simple (no 5th order polynomials or complex multi-branch rule

Not flag excessive points

Ideally provide altimeter data in all realms

How to assess?

Not to find rain, but bad data Not meaningful to compare to rain data

Define anomaly rel. to 7-pt median

p.d.f. of anomalies

Intra-1Hz variability

Select percentile: 98th at 0.92m;

96th at 0.61m

Semi-independent measure

Many possible parameters

1-tail or 2-tail?

Reduction in | Anomalies |

Tried 25 different tests – all worked!

More effective if remove more

Threshold to vary with Hs?

Variability is function of conditions

Summary

```
Flagging bad data rather than rain per se
Most techniques work; need to find most effective one
Rms(Hs) most effective
   rms(range) very similar
Different flagging appropriate for sigma0
% lost ??
The more data removed, the smaller the anomalies
   Some regions / conditions lose more
   Flagging density => rain, ice, possibly high Hs
   Chosen threshold depends upon application
```