Spatial processing techniques for Envisat and Saral/Altika altimetry data of the São Francisco River, Brazil

Philippe Maillard Department of Geography UNIVERSIDADE FEDERAL DE MINAS GERAIS BRAZIL (LEGOS)

Introduction

- Increasing pressure on water resources make water agencies seek new, more effcient technologies to monitor rivers
- Satellite altimetry (SA) has the advantage of being almost instantly available
- SA applied to continental hydrology still faces many challenges
- With finer resolutions SA becomes a tool for narrower rivers (less than 100 m in some cases)
- SARAL/Altika is a welcomed improved continuation of the Envisat mission

Introduction

- The São Francisco is the largest watershed entirely comprised in Brazil
- By crossing 5 states it is called the river of national integration
- It is navigable for a 1000 km stretch
- The focus of (polemic) attention with the transposition of its course
- SARAL offers an opportunity to convince water agencies of Brazil to create a network of VHS's for operational purposes

Objective

- Implement spatial processing techniques for extracting water levels on medium size rivers (< 1 km)
- Create application tools to systematically and efficently make measurements on VHS
- Compare results with *in situ* measurements from the São Francisco River, Brazil
- Compare Envisat and SARAL/Altika

Problem of hydrological altymetry

 First strong return is not always from nadir and retracker must select a «probable» target

Problem of hydrological altimetry

 Strongest return signal is often taken as water but might be off-nadir (hooking)

SARAL/Altika data

Postulate

- Visually, all these problems are easily recognizable
- They can be assimilated to a Pattern Recognition problem
- Especially if some prior information is known about the target (river)

VHSTOOLS: utility programs for processing virtual hydrological station data

Implemented in Python 2.7 VHSTOOLS perform the following tasks:

- 1. Extract time series satellite altimetry data (Envisat, Jason2, SARAL-Altika) from multiple NETCDF files (one per track per date) to create VHS's
- 2. Apply corrections to transform range data into altitude
- 3. Offer capacity to extract *in situ* data from the Brazilian water agency (ANA) that correspond to dates of the VHS
- 4. Transform (shift) coordinates of points relative to river centerline and plot points and track overlaying the true river centerline
- 5. Offer two solutions to process sequences of points to produce water level data (altitude)
- 6. Plot virtual station data with or without DEM data as background
- 7. Plot time series superimposing virtual station and in situ data

VHSTOOLS (GUI)

76 VHS - Virtual Hydrologic Station		. 🗆 🗙
General File Path:	C:/Envisat-SF/PMdaCruz	Change Path
Satellite TAB File:	C:/Envisat-SF/PMdaCruz/PMdaCruz_vhs.tab	Change File
Calibration TXT File:	C:/Envisat-SF/PMdaCruz/PMdaCruz.TXT	Change File
DEM File:	C:/Envisat-SF/PMdaCruz/PMdaCruz.hdr	Change File
.shp	C:/Envisat-SF/Rio_SF_corrected.shp	Change File
You chose year 2010	2010	
Geoide correction set	13.027	
Base level of station in m (negative for autocalibration):	-9	
Maximum distance from river centerline:	240	
Maximum outlier tolerance (default = 1.0):	2.5	
Options:	High waters calibration (top third)	□ Show relief
 Distance Weighted 	 Automatic (Distance) 	
GO!		QUITI

VHSTOOLS Outputs: plot of satellite track over river (true) centerline

Two solutions to process sequences of points to produce water level data

- 1. PATTERN RECOGNITION: classification of the shapes is performed using terms a1 and a2 of the second order polynomial function: $x' = a0 + a1y + a2y^2$. The ratio between a1 and a2 is also used.
- 2. DISTANCE FROM RIVER CENTERLINE: computes the natural average of all points contained within a certain distance of the river centerline.

VHSTOOLS Outputs: point sequence with river centerline and classification of pattern

VHSTOOLS Outputs: point sequence with DEM in background

VHSTOOLS Outputs: Time series of VHS's

River stretch of the São Francisco River

River stretch of the São Francisco River

Station name	Minimum.	Maximum	Amplitude (m)
$(in \ situ)$	altitude (m)	altitude (m)	
Cachoeira da Manteiga	467.58	476.36	8.78
São Romão	461.42	469.30	7.88
Pedra Maria da Cruz	449.84	458.15	8.31
Manga	439.03	446.02	6.99
Morpará	403.55	410.26	6.71

Satellite Altimetry Data

Envisat		Saral / Altika					
Paramotor	Hao	Saral/Daramotor	IIso				
ait_cog_emp	Altitude of the satellite relative	ait_40nz	Altitude of the satellite relative				
	to the ellpsoid at 1 Hz.		to the ellpsold.				
hz18_diff_1hz_alt	Altitude difference values to in-	time_40hz	Date in microseconds since				
	terpolate at 18 Hz.		2000.				
dsr_time_days	Date in number of days since	lat_40hz	Latitude of satellite point.				
	2000.						
dsr_time_microseconds	Seconds and microseconds.	lon_40hz	Longitude of satellite point.				
lat	Latitude of satellite point at 1	ice1_range_40hz	Ice1 range retracker product.				
	Hz.	_					
hz18_diff_1hz_lat	Latitude difference values to in-	ice1_qual_flag_40hz	Quality flag for ice1.				
	terpolate at 18 Hz.	1 0					
lon	Longitude of satellite point at 1	ice2 range 40hz	Ice2 range retracker product				
1011	Hz		100 2 1044go 10010040101 produco.				
hg18 diff 1hg lop	Longitude difference values to	ice2 qual flag 40bg	Quality flag for ice?				
11210_dill_1112_1011	interpolate at 18 Uz	1062_quai_nag_40m	Quality Hag for 1062.				
	Interporate at 10 mz.	·	Toward have connection at 1 II-				
HZIO_KU_CEI	icei range retracker product.	lono_corr_gim	(to be intermediated at 40 Hz)				
	To block		(to be interpolated at 40 Hz).				
hz18_ku_ice2	lce2 range retracker product.	mod_dry_tropo_corr	Pressure variation correction at				
			l Hz (to be inter. at 40 Hz).				
ku_icel_retrk_qua_flags	Quality flag for ice1.	model_wet_tropo_corr	Humidity variation correction				
			at 1 Hz (to be inter. at 40 Hz).				
ku_ice2_retrk_qua_flags	Quality flag for ice2.	pole_tide	Polar tide correction at 1 Hz (to				
			be inter. at 40 Hz).				
ion_corr_doris_ku	Ionosphere correction at 1 Hz	solid_earth_tide	Crustal vertical motion correc-				
	(to be interpolated at 18 Hz).		tion at 1 Hz (to be inter. at 40				
			Hz).				
mod dry tropo corr	Pressure variation correction at						
······································	1 Hz (to be inter at 18 Hz)						
mod wet tropo corr	Humidity variation correction						
modemoscopoccorr	at 1 Hz (to be inter at 18 Hz)						
geogen nole tide ht	Dolar tido correction at 1 Uz (to						
Reocen-bole-ride-tit	ha inter at 19 Hz)						
andid couth tide by	Ormatel matical mattice						
sond_eartn_tide_nt	Crustal vertical motion correc-						
	tion at I Hz (to be inter. at 18						
	Hz).						

Results (Envisat)

						$ \land $		\frown	
VHS name	RHS number	VHS - RHS	River width	River xsing	Base altitude	Pattern recog		Distance base	d
	(ANA)	dist. (m)	(m)	angle	of RHS	RMS error	V	RMS error	١
C_{da} Manteiga	42210000	-23605	640	58	466.030	0.729		0.736	
Sao_Romao	43200000	515	610	60	459.530	1.044		1.043	
PM_da_Cruz	44290002	-13849	475	71	449.000	1.231		0.789	
Manga	44500000	-19707	690	65	438.590	0.267	\mathbf{V}	0.303	/
Morpara	46360000	-531	690	72	401.253	0.188	$\underline{\wedge}$	0.210	<u>/</u>
									_

Altika's first cycle

Discussion and Conclusion

- The two different processing methods yielded similar results
- Pattern recognition is probably better when location of river centerline is approximate and when width is not precisely known
- There is a relation between RMSE and distance to *in situ* station showing that the hydraulic conditions have changed
- The effect of the environmental context should be taken into account to improve results
- Altika appears to bring increased details but did not reduce « hooking » effects
- The fact that *in situ* measurements are still not available stands to show the advantage of satellite altimetry
- (I think) Results could only really be improved using the wave forms in a contextual approach instead of using retracked data