cnes

Session III – CAL/VAL Part I

SARAL POD Status

ury, F. Mercier, E. Jalabert, J. Moyard

International Science and Applications Meeting SAC Ahmedabad, India April 22, 2014 Towards the Geophysical Data Records (GDR) version E standards

- GDR-D Precision Orbit Determination (POD) standards are applied in the SARAL operational processing since March 14, 2013 (start of cycle 1)
- 2014 (TBD): GDR-E standards (currently being defined)

Maneuvers affecting the Medium precision Orbit Ephemerides (MOE) and Precise Orbit Ephemerides (POE)

• 2013/07/29: Orbital inclination change

Arc 20 (cycle 4) impacted

• 2013/10/03: Orbital inclination change

• 2013/10/07: Orbital inclination change

Arcs 29 and 30 (cycle 6) impacted

MOE Status

RMS of radial orbit differences between POE and MOE

- Differences between MOE and POE orbits are generally well below
 1 cm RMS (outside inclination maneuvers)
- MOE and POE orbits are calculated with very similar model assumptions

cnes

POE: Performance of the Tracking Systems DORIS Measurements

- DORIS RMS residuals slightly increased after October 2013
- It seems to be the effect of increasing solar activity

POE: Performance of the Tracking Systems SLR Measurements

RMS of SLR post-fit residuals, all stations included

from 02/26/2013 to 04/05/2014

from 02/26/2013 to 03/13/2014

E R 0 R S M 0 Ξ 0 E

POE: Orbit Quality Analysis 1-cpr Empirical Accelerations

Beta-dependent patterns reveal unmodeled Solar Radiation Pressure (SRP) effects => Improvements (by calibration) expected in the next GDR-E POD standards, now a complete beta prime cycle (~1 year) is available

RMS of radial orbit differences between final POE and intermediate dynamic DORIS+SLR orbit

The stochastic process added in final POE orbits accommodates modeling errors in the order of 2-3 mm RMS (especially during high levels of solar and geomagnetic activity)

POE: Time Varying Gravity Effects

Mean geographically correlated radial differences between POE and the same orbit using an updated mean gravity field model

Bias amplitude geographic projection

- EIGEN-6S2.extended.v2: mean field proposed for the ITRF2013 analysis
- TVG-induced orbit errors map mainly into a longitudinal "order-1" pattern (< 1 cm), that could impact tide gauge calibration analysis

POE: Time Varying Gravity Effects

Linear rates of the radial orbit differences between POE and the same orbit using an updated mean gravity field model

 Residual radial orbit differences exhibit geographically correlated drifts below 3 mm/y over the 1-year lifespan of the SARAL mission
 => Improvements expected (by update) in the next GDR-E standards

Measurement models

Terrestrial Reference Frame and Earth Orientation

- ITRF2013 based (DORIS, SLR, GPS: ITRF2008 -> ITRF2013)
- Earth orientation: IERS2010/ITRF2008 -> IERS2010/ITRF2013

Displacements of reference points

- Ocean loading (FES2004 -> FES2012)
- S1-S2 atmospheric pressure loading, implementation of Ray & Ponte (2003) by van Dam

Orbits around the center-of-mass of the total Earth system

- Seasonal non-tidal geocenter motion ("Climatological model" SLR-only; from J. Ries)
- Ocean tidal geocenter motion + S1-S2 atmospheric tidal geocenter motion

Models for propagation delays

DORIS beacons phase correction

Dynamic models

Geopotential

- EIGEN-GRGS.RL02bis.MEAN-FIELD (based on 8 years of GRACE/LAGEOS RL02 data, static field, time-variable terms up to degree and order 50: annual, semi-annual and drift terms) -> EIGEN_03series (based on 11 years of GRACE/LAGEOS RL03 data, GRACE+GOCE static field, time-variable terms up to degree and order 80: annual, semi-annual terms, one bias and drift for each year) => accounts for interannual variability)
- C21/S21 modelled according to the IERS 2010 Conventions
- Ocean tides: FES2004 -> FES2012

Surface forces

- Calibrated semi-empirical solar radiation pressure models
- Drag from atmospheric density model: DTM-94 -> DTM-2013
- Estimated dynamical parameters
 - Tuning of empirical accelerations and 1st order Markov process

- POE/MOE radial orbit error below 2 cm RMS and stable throughout the mission
- Cross-track bias (~5 cm) of unknown origin (Z CoM offset or bias in SRP model cannot be distinguished) and TVG mismodeling errors (< 1 cm) are expected to be reduced in the next GDR-E standards

Orbits reprocessing tentative schedule

End of July 2014:

- » GDR-E standards are finalized and implemented in CNES POD software
- » Operational orbits remain in GDR-D standards
- » GDR-E reprocessing will start at the same time

+ October 2014:

» Results obtained using the available GDR-E orbits are presented at next OSTST, a change towards the GDR-E standards will be proposed to the science community

December 2014:

» Operational orbits switch to GDR-E, reprocessed GDR-E orbits are made available, GDR-D standards are abandoned

Backups

Orbit Quality Analysis Through Short-arc Technique

SLR data:

Number of normal points increased since the first months (from 33 to 53 NP/day over Europe) Remains low in average for USA (~22 NP/day) and Australia (~35 NP/day)

Radial orbit errors:

Stability better than 2 cm for MOE and POE Stability better than 4 cm for DIODE Small geographically correlated errors (below 1 cm for MOE and POE, 2 cm for DIODE) Maybe a small hemispheric effect: -8 mm (Europe/USA) / +13 mm (Australia)

Along-track orbit errors:

Stability better than 2 cm for POE Stability better than 4 cm for MOE Stability better than 8 cm for DIODE

Across-track orbit errors:

A large bias of ~5 cm for both POE (4 cm), MOE (6 cm) and DIODE (3 cm) also large standard deviation (6-10 cm) Instrument referencing (CoM position)? Correlation with beta angle (Radiation pressure)?

Orbit precision is very close for both MOE and POE Especially for the radial component: Correlation = 93% / Slope = 0.7 Courtesy of

P. Bonnefond

Courtesy of P. Bonnefond

Courtesy of P. Bonnefond