Introduction	GrIS darkening	Snow impurities	Conclusion 0000	Add-ons

Analyse de la baisse récente de l'albedo du Groenland

M. Dumont*, <u>E. Brun</u>**, G. Picard***

M. Geyer**, B. Josse**, Q. Libois*** M. Michou**, S. Morin*, J.R. Petit***

* CNRM-GAME, Grenoble, ** CNRM-GAME, Toulouse, *** LGGE, Grenoble

Atelier altimétrie et glaciologie, CNES, Toulouse, 26 Juin 2014

Introduction	
000	

- Quelques faits sur l'évolution récente du Groenland
- Revisite de la baisse récente de l'albedo : focalisation sur la zone d'accumulation et le printemps
- Assombrissement systématique au printemps depuis 2009
- Role des impuretés à la surface de la neige

Essentiellement résultats de Dumont et al., 2014

Introduction GrIS darkening Snow impurities Conclusion Add-ons Conclusion Con

Quelques chiffres

- Surface : 1.7 million km²
- Epaisseur moyenne de glace \sim 2 km
- Equivalent en niveau des mers : 7.4 m
- Diminution récente de la glace
- Répartie également entre :
 bilan de masse superficiel (SMB)
 calving et fonte par l'océan
 - ==> env. 0.7 mm/yr de s.l.r entre 2007 et 2011 (IPCC AR5)

Conclusion

Rôle de l'albedo de la neige et de la glace

Importance de l'albedo dans le bilan de masse superficiel

- \sim +0.3 mm/an de hausse du niveau des mers du au GrIS SMB de 2002 à 2011 (IPCC AR5)
- l'albedo de la neige et de la glace est un paramètre clé du bilan de surface et donc de la fonte
- l'albedo a diminué sur la plus grande partie du GrIS de 2000 à 2012 :
 - plus en zone d'ablation qu'en zone d'accumulation
 - de façon plus prononcée en juillet (Box et al., 2012; Tedesco et al., 2013; Stroeve et al., 2013)
- la forte anomalie <0 de 2010 à 2012 a été attribuée à l'anomalie de circulation atmosphé rique (NAO-) et aux rétroactions neige/albedo

GrIS darkening

Snow impurities

Conclusion

Add-ons

Important snow albedo / climate feedbacks : metamorphism and impurities concentration

GrIS darkening

Snow impurities

Conclusion

Add-ons

Important snow albedo / climate feedbacks : metamorphism and impurities concentration

Surface impurities concentration by snow surface melting

+ higher darkening efficiency of impurities for larger snow grains

GrIS darkening

Snow impurities

Conclusion

Add-ons

Processing of MODIS observations

Blue-sky broadband albedo

- daily MOD10A1 data reprojected onto 15-km stereographic polar grid
- filtered as in Box et al.(2012) eval. against AWS albedo

GrIS darkening 000

r...=65 µ m

r____=50 µ m

40

20

30 Soot ng g⁻¹

Processing of MODIS observations

Blue-sky broadband albedo

- daily MOD10A1 data reprojected onto 15-km stereographic polar grid
- filtered as in Box et al.(2012) eval. against AWS albedo

(from MODIS MCD43A3 product)

(from MODIS MCD43A3 product)

(from MODIS MCD43A3 product)

(from MODIS MCD43A3 product)

Introduction	GrIS darkening	Snow impurities	Conclusion	Add-ons
		0000000		

2 The Greenland Ice Sheet darkening

The role of light absorbing impurities in GrIS darkening in Spring

Conclusion

5 Add-ons

Introduction	GrIS darkening	Snow impurities	Conclusion	Add-ons
		•0000000		

Snow simulations to explain GrIS Spring darkening

Crocus snow model configuration

- Off-line mode with following forcings :
 - ERA-interim downscaled onto a 15 km GrIS grid
 - vertical corrections from
 - Cosgrove et al. (2003)
 - snow-rain partition from the altitude of iso-T 1°C.
- snow albedo function of : snow grain size and age

Snow albedo feedbacks (metamorphism and impurities) are simulated with a constant impurities deposition rate \Rightarrow simulated albedo depends on meteorological conditions only

Introduction	GrIS darkening	Snow impurities	Conclusion	Add-ons
		0000000		

Evaluation of Crocus/ERA-int simulations over GrIS

Introduction	GrIS darkening	Snow impurities	Conclusion	Ac
		0000000		

Evaluation of Crocus/ERA-int simulations over GrIS

1989-2008 Annual Surface Mass Balance

Observed / simulated albedo May-June above 2000 m

Observed / simulated albedo May-June above 2000 m

The decrease in Spring albedo above 2000 m cannot be explained by local meteorological conditions only

Introduction	GrIS darkening	Snow impurities	Conclusion	Add-ons
		0000000		

Confidence in MODIS albedo observations :

- comparison Greenland / Antarctica at the same observing zenithal angles

Greenland : May-June 75-80°N ; 30-50 °W ; above 2000 m Antarctica : Nov-Dec 75-80°S ; 110-150 °E

the MODIS albedo decrease over GrIs is not due to sensor degradation
The albedo decreases more in the visible than in the NIR spectrum

Introduction	GrIS darkening	Snow impurities	Conclusion 0000	Add-ons
Confidence in tl	ne increase in surfa	ce snow impurities ove	er the GrIS :	

- comparison Greenland / Antarctica and MODIS / MERIS

Confidence in the increase in surface snow impurities over the GrIS :

- comparison Greenland / Antarctica and MODIS / MERIS

- comparison Greenland / Antarctica and MODIS / MERIS

- the impurity index i_{imp} increases much more over Greenland
- MERIS and MODIS detect a similar increase over Greenland
- only 1/3 of the albedo decrease could stem from an artefact in MODIS retrieval algorithm due to the increase in the Atmospheric Optical Depth

 \Rightarrow Evidence for an actual increase in light absorbing impurities in snow

GrIS darkening

Snow impurities

Conclusion

Add-ons

Evolution of Impurity Index (May-June)

No substantial in-situ evidence of the impurity sources but :

- Reddish colour of the impurities
- Similar trend with the extension of the Arctic snow extent in Spring

 \Rightarrow likely due to an increase in deposition of dust exported from extending snow-free areas and associated increase in biomass fires

Snow Cover Extent data updated from Derksen and Brown (2012)

Introduction
ocoGrlS darkening
ocoSnow impurities
cocoococeConclusion
cocoAdd-ons
cocoococePossible origins of the increase in surface snow
impurities (2/2)Impurities
(2/2)Impurities
(2/2)Impurities
(2/2)Impurities
(2/2)

Other possible sources

- Extension of the development of cyanobacteria /algae to the accumulation area due to warming and melt events ⇒ additional unexpected climate feedback
- Increase of dust emissions from industry
- General increase in dust load of the Arctic atmosphere
- Volcanic eruptions (Eyjafjallajökull April 2010; Grimsvötn May 2011)

Field investigation required to identify the impurity source(s)

Introduction	GrIS darkening	Snow impurities	Conclusion ●০০০	Add-ons
Situation	en mai et jui	n 2014		

Situation en mai et juin 2014

Introduction
ocoGrlS darkening
ocoSnow impurities
cocococoConclusion
ocoAdd-ons
cocococoAmplification of a 0.01 decrease in fresh-snow albedo
by the snow albedo feedbacks (Crocus simulation)

 \Rightarrow GrIS SMB difference = -27 GT/yr (2009-2012 mean)

Introduction 000	GrIS darkening	Snow impurities	Conclusion ○○●○	Add-ons
Conclusion				

Principal results

- A detailed analysis of MODIS albedo observations

 Numerical simulation of the GrIS snowpack
 Evidence of a recent Spring darkening of the GrIS accumulation area due to an increase in light-absorbing impurities
 Likely linked with the earlier melting of the Arctic snowpack (climate feedback)
- Strong impact of increasing snow impurity on the GrIS SMB : -0.01 in Crocus new/fresh snow albedo ⇒ -27GT/yr
- Open issues :
 - No substantial in-situ evidence of the impurity sources
 - \implies requires field investigations
 - Are other components of the Arctic Cryosphere concerned ?
- Several feedbacks since the publication likely to initiate cooperative studies

Introduction	GrIS darkening	Snow impurities	Conclusion ooo●	Add-ons
Remerci	ements			

This study was supported by :

- CNES TOSCA program : projects CONCORDIASI and Ts-Antar
- COMBINE EU-FP7
- French ANR MONISNOW programme ANR-11-JS56-005-01
- French ANR programme NEEM (ANR-07-VULN-09-001)

Introduction	GrIS darkening	Snow impurities	Conclusion	Add-ons
				•000000

- 2 The Greenland Ice Sheet darkening
- 3 The role of light absorbing impurities in GrIS darkening in Spring

4 Conclusion

Snow impurities

Conclusion

Add-ons

Current state of snow albedo modelling over GrIS

The higher resolution of CMIP5 vs CMIP3 induces a better representation of physical processes over the GrIS but :

- Most CMIP5 models implement rather simple snow models :
 - 1 to 5 snow layers only
 - snow albedo mainly depending on ageing and snowfall
 - no explicit representation of the perennial ice beneath seasonal snow
 - \Rightarrow internal snow albedo feedbacks are poorly represented
- Atmospheric load of aerosols generally prescribed or poorly represented

Use of HIST (1891-1890) and RCP8.5 (2091-2100) scenarios to illustrate current limitations

Introduction	GrIS darkening	Snow impurities	Conclusion	Add-ons
				0000000

Greenland albedo in HIST and RCP8.5 scenarios

July white-sky albedo HIST scenario

Introduction	GrIS darkening	Snow impurities	Conclusion	Add-ons
				0000000

Greenland albedo in HIST and RCP8.5 scenarios

July white-sky albedo RCP8.5 scenario

Introduction	GrIS darkening	Snow impurities	Conclusion	Add-ons
				0000000

Greenland albedo in HIST and RCP8.5 scenarios

July albedo difference 2091-2100 RCP8.5 - 1891-1900 HIST

GrIS darkening

Snow impurities

Conclusion

Add-ons

Evolution of Impurity Index (May-June)

000	000	00000000	0000	000000	
Atmospheric and ourface dust content					

GrIS darkening

Snow impurities

Conclusion

Add-ons

May-June-July mean and standard deviation of measured aerosol optical depth (AOD) at 550 nm (AERONET data)

Stations/Year	Kangerlussuag	Thule
2007		0.055 (0.021)
2008	0.065 (0.031)	0.081 (0.044)
2009	0.084 (0.030)	0.085 (0.025)
2010	0.048 (0.015)	0.061 (0.024)
2011	0.060 (0.017)	0.061 (0.020)
2012	0.070 (0.034)	0.101 (0.034)

Snow impurities

Conclusion

Add-ons

Recent measurements of snow impurities in the dry and percolation zones of Greenland

Source	Date	BC (ng g-1)	Dust (ng g-1)	Location and comments
Ref. 31	May and June 2011	0.30.3	128069	Summit
Ref. 15	Spring 2007,2008	402	5106 % absorption from non BC particles	Several locations in Greenland
Ref. 25	2007 to 2010	5 to 100 BC	equivalent	Dye-2 (percolation zone)
Ref. 53	June and July 2012	0.9 to 4.9	102 to 1329	Sigma-A (1490 m <u>a.s.</u>))
Ref. 54	June and July 2006	0.60.4	Not measured	Summit

Similar results in Antarctica : extensive evaluation in Freville et al. (TCD)

Evaluation of Crocus hourly surface temperature against MODIS LST (Summer 2000-2011)

